精英家教网 > 高中数学 > 题目详情

建造一个容积为8m3,深为2m的长方体无盖水池,如果池底和池壁的造价每平方米分别为120元和80元,则水池的最低造价为 ________.

1760
分析:欲求水池的最低造价,先设长x,则宽,列出总造价,是一个关于x的函数式,最后利用基本不等式求出此函数式的最小值即可.
解答:设长x,则宽,造价y=4×120+4x×80+×80≥1760,
当且仅当:4x×80=×80,即x=2时取等号.
故答案为:1760.
点评:本小题主要考查函数模型的选择与应用,属于基础题.解决实际问题通常有四个步骤:(1)阅读理解,认真审题;(2)引进数学符号,建立数学模型;(3)利用数学的方法,得到数学结果;(4)转译成具体问题作出解答,其中关键是建立数学模型.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

建造一个容积为8m3,深为2m的长方体无盖水池,如果池底的造价为每平方米120元,池壁的造价为每平方米80元,
(1)设池底的长为x m,试把水池的总造价S表示成关于x的函数;
(2)如何设计池底的长和宽,才能使总造价S最低,求出该最低造价.

查看答案和解析>>

科目:高中数学 来源: 题型:

建造一个容积为8m3,深为2m的长方形无盖水池,如果池底和池壁的造价分别为120元/m2和80元/m2
(1)求总造价关于底面一边长的函数解析式,并指出函数的定义域;
(2)求总造价的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

建造一个容积为8m3,深为2m的长方体无盖水池,池底和池壁的造价每平方米分别为120元和80元,如果水池的总造价为1 760元,则长方体底面一边长为
2
2
米.

查看答案和解析>>

科目:高中数学 来源: 题型:

某校要建造一个容积为8m3,深为2m的长方体无盖水池,池底和池壁的造价每平方米分别为240元和160元,那么水池的最低总造价为
3520
3520
元.

查看答案和解析>>

科目:高中数学 来源: 题型:

建造一个容积为8m3,深为2m的长方体元盖水池,如果池底和池壁的造价分别为每平方米120元和80元,问水池的长、宽各为多少米时总造价最低?最低造价是多少元?

查看答案和解析>>

同步练习册答案