精英家教网 > 高中数学 > 题目详情

已知双曲线数学公式的左、右焦点分别为F1、F2,抛物线数学公式与双曲线C1共焦点,C1与C2在第一象限相交于点P,且|F1F2|=|PF1|,则双曲线的离心率为________.


分析:过P作抛物线准线的垂线,垂足为A,连接PF2,在直角△F1AP中.利用勾股定理,结合双曲线、抛物线的定义,即可求出双曲线的离心率.
解答:设点P(x0,y0),F2(c,0),过P作抛物线准线的垂线,垂足为A,连接PF2,由双曲线定义可得|PF2|=|PF1|-2a
由抛物线的定义可得|PA|=x0+c=2c-2a,∴x0=c-2a
在直角△F1AP中,

∴8ac-4a2=4c(c-2a)
∴c2-4ac+a2=0
∴e2-4e+1=0
∵e>1
∴e=
故答案为:
点评:本题考查双曲线与抛物线的定义,考查双曲线的几何性质,解题的关键是确定关于几何量的等式.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知双曲线C:
x2
9
-
y2
16
=1
的左、右焦 点分别为F1、F2,P为C的右支上一点,且|
PF2
|=|
F1F2
|,则△PF1F2
的面积等于
 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年贵州省高三第一次月考文科数学 题型:解答题

(本小题满分12分)已知椭圆的方程为 ,双曲线的左、右焦

 

点分别是的左、右顶点,而的左、右顶点分别是的左、右焦点.

(1)求双曲线的方程;                                             

(2)若直线与双曲线C2恒有两个不同的交点A和B,求的范围。

 

查看答案和解析>>

科目:高中数学 来源:2011年广西桂林市高三第一次联合调研数学试卷(文科)(解析版) 题型:解答题

已知双曲线的左、右焦 点分别为F1、F2,P为C的右支上一点,且的面积等于   

查看答案和解析>>

科目:高中数学 来源:2011年广西桂林市高三第一次调研数学试卷(理科)(解析版) 题型:解答题

已知双曲线的左、右焦 点分别为F1、F2,P为C的右支上一点,且的面积等于   

查看答案和解析>>

同步练习册答案