精英家教网 > 高中数学 > 题目详情
若方程
x2
25-k
+
y2
16+k
=1
表示的曲线为双曲线,则实数k的取值范围为
(-∞,-16)∪(25,+∞)
(-∞,-16)∪(25,+∞)
分析:由双曲线方程的特点可得(25-k)(16+k)<0,解之可得.
解答:解:若方程
x2
25-k
+
y2
16+k
=1
表示的曲线为双曲线,
则(25-k)(16+k)<0,即(k-25)(16+k)>0,
解得k<-16,或k>25,即k∈(-∞,-16)∪(25,+∞),
故答案为:(-∞,-16)∪(25,+∞)
点评:本题考查双曲线的简单性质,得出(25-k)(16+k)<0是解决问题的关键,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

以下四个命题:
①已知A、B为两个定点,若|PA|+|PB|=k(k为常数),则动点P的轨迹为椭圆.
②双曲线
x2
25
-
y2
9
=1
与椭圆
x2
35
+y2=1
有相同的焦点.
③方程2x2-5x+2=0的两根可分别作为椭圆和双曲线的离心率.
④过定圆C上一定点A作圆的动弦AB,O为坐标原点,若
OP
=
1
2
(
OA
+
OB
)
,则动点P的轨迹为椭圆;
其中真命题的序号为
②③
②③

查看答案和解析>>

科目:高中数学 来源: 题型:

以下三个关于圆锥曲线的命题中:
①设A、B为两个定点,K为非零常数,若|PA|-|PB|=K,则动点P的轨迹是双曲线.
②方程2x2-5x+2=0的两根可分别作为椭圆和双曲线的离心率
③双曲线
x2
25
-
y2
9
=1与椭圆
x2
35
+y2=1有相同的焦点.
④已知抛物线y2=2px,以过焦点的一条弦AB为直径作圆,则此圆与准线相切
其中真命题为
②③④
②③④
(写出所以真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

椭圆C:
x2
25
+
y2
9
=1
的焦点为F1,F2,有下列研究问题及结论:
①曲线
x2
25-k
+
y2
9-k
=1 (k<9)
与椭圆C的焦点相同;
②一条抛物线的焦点是椭圆C 的短轴的端点,顶点在原点,则其标准方程为x2=±6y;
③若点P为椭圆上一点,且满足
PF1
PF2
=0
,则|
PF1
+
PF2
|
=8.
则以上研究结论正确的序号依次是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

以下四个关于圆锥曲线的命题中:
①设A、B为两个定点,k为非零常数,|
PA
|-|
PB
|=k
,则动点P的轨迹为双曲线;
②平面内到两定点距离之和等于常数的点的轨迹是椭圆
③若方程
x2
4-t
+
y2
t-1
=1
表示焦点在x轴上的椭圆,则1<t<
5
2

④双曲线
x2
25
-
y2
9
=1与椭圆
x2
35
+y2=1
有相同的焦点.
其中真命题的序号为
③、④
③、④
(写出所有真命题的序号)

查看答案和解析>>

同步练习册答案