精英家教网 > 高中数学 > 题目详情
(理科)如图分别是正三棱台ABC-A1B1C1的直观图和正视图,O,O1分别是上下底面的中心,E是BC中点.

(1)求正三棱台ABC-A1B1C1的体积;
(2)求平面EA1B1与平面A1B1C1的夹角的余弦;
(3) 若P是棱A1C1上一点,求CP+PB1的最小值.
(1)21;(2);(3) 

试题分析:(1)由题意,正三棱台高为……..2分
………..4分
(2)设分别是上下底面的中心,中点,中点.以 为原点,过平行的线为轴建立空间直角坐标系.
设平面的一个法向量,则
,取平面的一个法向
,设所求角为
……..8分
(3)将梯形旋转到,使其与成平角

,由余弦定理得
的最小值为 ……13分
点评:高考中的立体几何问题主要是探求和证明空间几何体中的平行和垂直关系以及空间角、体积等计算问题.对于平行和垂直问题的证明或探求,其关键是把线线、线面、面面之间的关系进行灵活的转化.在寻找解题思路时,不妨采用分析法,从要求证的结论逐步逆推到已知条件.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,底面是矩形,侧棱⊥底面的中点,的中点.

(1)证明:平面
(2)若为直线上任意一点,求几何体的体积;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,直角梯形与等腰直角三角形所在的平面互相垂直.

(1)求证:
(2)求直线与平面所成角的正弦值;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图1,在直角梯形中,,且
现以为一边向形外作正方形,然后沿边将正方形翻折,使平面与平面垂直,的中点,如图2.
(1)求证:∥平面
(2)求证:平面
(3)求点到平面的距离.
  
                                    图

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,底面
的中点.

(Ⅰ)求和平面所成的角的大小;
(Ⅱ)证明平面
(Ⅲ)求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,平面ABCD⊥平面ABEF,又ABCD是正方形,ABEF是矩形,且GEF的中
点.

(1)求证:平面AGC⊥平面BGC;
(2)求GB与平面AGC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知三棱柱的侧棱与底面边长都相等,在底面上的射影为的中点D,则异面直线AD与所成的角的余弦值为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥P-ABCD中,PA⊥底面ABCD,底面是直角梯形,AB⊥AD,点E在线段AD上,且CE∥AB。

求证:CE⊥平面PAD;
(11)若PA=AB=1,AD=3,CD=,∠CDA=45°,求四棱锥P-ABCD的体积

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,正方形与梯形所在的平面互相垂直,,,点在线段上.

(I)当点中点时,求证:∥平面
(II)当平面与平面所成锐二面角的余弦值为时,求三棱锥 的体积.

查看答案和解析>>

同步练习册答案