精英家教网 > 高中数学 > 题目详情

已知函数
(1)当时,求函数的定义域、值域及单调区间;
(2)对于,不等式恒成立,求正实的取值范围.

解:(1)当时,,函数定义域为……1分
值域为R………………………………………………………2分
递减区间为无递增区间…………………………2分
(2)原命题可化为,恒成立……………………1分
,在 上恒成立,即,……3分
上递减,当…………………2分
因些:

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

心理学家发现,学生的接受能力依赖于老师引入概念和描述问题所用的时间,上课开始时,学生的兴趣激增,中间有一段不太长的时间,学生的兴趣保持较理想的状态,随后学生的注意力开始分散,并趋于稳定.分析结果和实验表明,设提出和讲述概念的时间为(单位:分),学生的接受能力为值越大,表示接受能力越强),
  
(1)开讲后多少分钟,学生的接受能力最强?能维持多少时间?
(2)试比较开讲后5分钟、20分钟、35分钟,学生的接受能力的大小;
(3)若一个数学难题,需要56的接受能力以及12分钟时间,老师能否及时在学生一直达到所需接受能力的状态下讲述完这个难题?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

函数的定义,且满足对任意
有:
的值。
判断的奇偶性并证明
如果,且上是增函数,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)已知幂函数为偶函数,且在区间上是单调增函数.
(Ⅰ)求函数的解析式;
(Ⅱ)设函数,其中.若函数仅在处有极值,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)某网民用电脑上因特网有两种方案可选:一是在家里上网,费用分为通讯费(即电话费)与网络维护费两部分。现有政策规定:通讯费为0.02元/分钟,但每月30元封顶(即超过30元则只需交30元),网络维护费1元/小时,但每月上网不超过10小时则要交10元;二是到附近网吧上网,价格为1.5元/小时。
(1)将该网民在某月内在家上网的费用(元)表示为时间(小时)的函数;
(2)试确定在何种情况下,该网民在家上网更便宜?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)函数的定义域为为实数).
(1)当时,求函数的值域;
(2)若函数在定义域上是减函数,求的取值范围;
(3)函数上的最大值及最小值,并求出函数取最值时的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知函数为偶函数.
(Ⅰ) 求的值;
(Ⅱ) 若方程有且只有一个根, 求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

二次函数,满足为偶函数,且方程有相等实根。
(1)求的解析式;
(2)求上的最大值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

计算下列各式
(Ⅰ) 
(Ⅱ)

查看答案和解析>>

同步练习册答案