精英家教网 > 高中数学 > 题目详情
已知数列{an}是公比大于1的等比数列,满足a3•a4=128,a2+a5=36;数列{bn}满足bn+1=2bn-bn-1(n∈N*,n≥2),且b2≠b1=1,b2,b4,b8成等比数列.
(1)求{an}及{bn}的通项公式;
(2)求数列{anbn}的前n项和Sn
(1)依题意,
a3a4=128
a2+a5=36
?
a2a5=128
a2+a5=36
,又a5>a2
a2=4
a5=32
,解得
a1=2
q=2

∴an=2n
由bn+1=2bn-bn-1,得2bn=bn+1+bn-1(n∈N*,n≥2),
∴{bn}是等差数列,设其公差为d,由b42=b2•b8及b1=1,得:(1+3d)2=(1+d)(1+7d),
∴d2=d,又b2≠b1
∴d=1,
∴bn=1+(n-1)×1=n.
∴an=2n,bn=n;
(2)由Sn=1×21+2×22+…+(n-1)×2n-1+n×2n得:
2Sn=1×22+…+(n-1)×2n+n×2n+1
两式相减得:-Sn=(21+22+…+2n)-n×2n+1=
2(1-2n)
1-2
-n×2n+1=-2+(1-n)×2n+1
故Sn=(n-1)×2n+1+2.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义一个“等积数列”:在一个数列中,如果每一项与它后一项的积都是同一常数,那么这个数列叫“等积数列”,这个常数叫做这个数列的公积.已知数列{an}是等积数列,且a1=2,公积为5,则这个数列的前n项和Sn的计算公式为:
 

查看答案和解析>>

科目:高中数学 来源: 题型:

按照等差数列的定义我们可以定义“等和数列”:在一个数列中,如果每一项与它的后一项的和都为同一个常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和.已知数列{an}是等和数列,且a1=2,公和为5,那么a8的值为
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

在一个数列中,如果?n∈N*,都有an•an+1•an+2=k(k为常数),那么这个数列叫做等积数列,k叫做这个数列的公积.已知数列{an}是等积数列,且a1=1,a2=3,公积为27,则a1+a2+a3+…+a18=
78
78

查看答案和解析>>

科目:高中数学 来源: 题型:

一个数列,如果每一项与它的后一项的和都为同一个常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和.已知数列{an}是等和数列,且a1=2,公和为5,那么这个数列的前21项和S21的值为
52
52

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列的定义为:在一个数列中,从第二项起,如果每一项与它的前一项的差都为同一个常数,那么这个数列叫做等差数列,这个常数叫做该数列的公差.
(1)类比等差数列的定义给出“等和数列”的定义;
(2)已知数列{an}是等和数列,且a1=2,公和为5,求 a18的值,并猜出这个数列的通项公式(不要求证明).

查看答案和解析>>

同步练习册答案