精英家教网 > 高中数学 > 题目详情

四棱台-ABCD,两底面是平行四边形,且=,过和B的平面将四棱台截去一个三棱锥,则剩余部分的体积是截去部分体积的

[    ]

A.14倍   B.13倍   C.7倍   D.6倍

练习册系列答案
相关习题

科目:高中数学 来源: 题型:阅读理解

(必做题)先阅读:如图,设梯形ABCD的上、下底边的长分别是a,b(a<b),高为h,求梯形的面积.
方法一:延长DA、CB交于点O,过点O作CD的垂线分别交AB、CD于E、F,则EF=h.
设OE=x,∵△OAB∽△ODC,∴
x
x+h
=
a
b
,即x=
ah
b-a

∴S梯形ABCD=S△ODC-S△OAB=
1
2
b(x+h)-
1
2
ax=
1
2
(b-a)x+
1
2
bh=
1
2
(a+b)h.
方法二:作AB的平行线MN分别交AD、BC于MN,过点A作BC的平行线AQ分别于MN、DC于PQ,则△AMP∽△ADQ.
设梯形AMNB的高为x,MN=y,
x
h
=
y-a
b-a
⇒y=a+
b-a
h
x,∴S梯形ABCD=
h
0
(a+
b-a
h
x)dx=(ax+
b-a
2h
x2
|
h
0
=ah+
b-a
2h
•h2=
1
2
(a+b)h.
再解下面的问题:
已知四棱台ABCD-A′B′C′D′的上、下底面的面积分别是S1,S2(S1<S2),棱台的高为h,类比以上两种方法,分别求出棱台的体积(棱锥的体积=
1
3
×底面积×高).

查看答案和解析>>

科目:高中数学 来源:2004全国各省市高考模拟试题汇编(天利38套)·数学 题型:044

如图,在正四棱柱ABCD-A1B1C1D1中,AA1AB,点E,M分别为A1B,C1C的中点,过点A1,B,M三点的平面A1BMN交C1D1于点N

(Ⅰ)求证:EM∥平面A1B1C1D1

(Ⅱ)求二面角B-A1N-B1的正切值;

(Ⅲ)(文)设A1A=1,求棱台MNC1-BA1B1的体积V.

(理)设截面A1BMN把该正四棱柱截成的两个几何体的体积分别为V1,V2(V1<V2),求V1∶V2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题

①平行于同一直线的两个平面平行.

②平行于同一平面的两个平面平行.

③正方体ABCDA1B1C1D1中,平面ACD1与平面A1BC1平行.

④四棱台ABCDA1B1C1D1中,平面BCC1B1与平面ADD1A1相交.

⑤在两个平面内分别有一条直线,这两条直线不平行,那么这两个平面必相交.

其中正确结论的序号是__________.

查看答案和解析>>

同步练习册答案