精英家教网 > 高中数学 > 题目详情
已知函数f(x)是奇函数,当x<0时,f(x)=x2+a•cosπx,若f(1)=2,则实数a=
3
3
分析:先根据函数f(x)是奇函数得到f(-1)=-2;再代入解析式即可求实数a.
解答:解:因为函数f(x)是奇函数,
∴f(1)=-f(-1)=2;
∴f(-1)=-2.
∴(-1)2+a•cosπ(-1)=-2⇒1-a=-2⇒a=3.
故答案为:3.
点评:本题主要考查奇函数的性质应用以及余弦函数性质的运用.是对基础知识的综合考查,属于基础题目.考查计算能力以及分析能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)是奇函数,且在区间[1,2]上单调递减,则f(x)在区间[-2,-1]上是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是奇函数,函数g(x)=f(x-2)+3,那么g(x)的图象的对称中心的坐标是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是奇函数,且当x≥0时,f(x)=ln(x+1),则当x<0时,f(x)的解析式为
f(x)=-ln(-x+1)
f(x)=-ln(-x+1)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是奇函数,且当x>0时,f(x)=x3+2x+1,则当x<0时,f(x)的解析式为
f(x)=x3+2x-1
f(x)=x3+2x-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是奇函数,f(x)的定义域为(-∞,+∞).当x<0时,f(x)=
ln(-ex)
x
.这里,e为自然对数的底数.
(1)若函数f(x)在区间(a,a+
1
3
)(a>0)
上存在极值点,求实数a的取值范围;
(2)如果当x≥1时,不等式f(x)≥
k
x+1
恒成立,求实数k的取值范围;
(3)试判断 ln
1
n+1
2(
1
2
+
2
3
+…+
n
n+1
)-n
的大小关系,这里n∈N*,并加以证明.

查看答案和解析>>

同步练习册答案