【题目】响应“文化强国建设”号召,某市把社区图书阅览室建设增列为重要的民生工程.为了解市民阅读需求,随机抽取市民200人做调查,统计数据表明,样本中所有人每天用于阅读的时间(简称阅读用时)都不超过3小时,其频数分布表如下:(用时单位:小时)
用时分组 | ||||||
频数 | 10 | 20 | 50 | 60 | 40 | 20 |
(1)用样本估计总体,求该市市民每天阅读用时的平均值;
(2)为引导市民积极参与阅读,有关部门牵头举办市读书经验交流会,从这200人中筛选出男女代表各3名,其中有2名男代表和1名女代表喜欢古典文学.现从这6名代表中任选2名男代表和2名女代表参加交流会,求参加交流会的4名代表中,喜欢古典文学的男代表多于喜欢古典文学的女代表的概率.
【答案】(1)1.65小时;(2).
【解析】试题分析:(1)根据阅读用时频数分布列表,利用平均数的计算公式,即可得到该市市民每天阅读用时的平均值;
(2)设参加交流会的男代表为,其中喜欢古典文学,列举出基本事件的总数,利用古典概型的概率计算公式,即可求解男代表多于喜欢古典文学的女代表的概率.
试题解析:
(1)根据阅读用时频数分布列表可求
;
故该市市民每天阅读用时的平均值为1.65小时;
(2)设参加交流会的男代表为,其中喜欢古典文学,
则男代表参加交流会的方式有:,共3种;
设选出的女代表为:,其中喜欢古典文学,
则女代表参加市交流会的方式有:,共3种,
所以参加市交流会代表的组成方式有:
共9种,
其中喜欢古典文学的男代表多于喜欢古典文学的女代表的是:
共5种,所以,喜欢古典文学的男代表多于喜欢古典文学的女代表的概率是.
科目:高中数学 来源: 题型:
【题目】某中学为研究学生的身体素质与课外体育锻炼时间的关系,对该校200名高三学生平均每天课外体育锻炼时间进行调查,如表:(平均每天锻炼的时间单位:分钟)
将学生日均课外体育锻炼时间在的学生评价为“课外体育达标”.
(1)请根据上述表格中的统计数据填写下面的列联表;
课外体育不达标 | 课外体育达标 | 合计 | |
男 | |||
女 | 20 | 110 | |
合计 |
(2)通过计算判断是否能在犯错误的概率不超过0.01的前提下认为“课外体育达标”与性别有关?
参考格式:,其中
0.025 | 0.15 | 0.10 | 0.005 | 0.025 | 0.010 | 0.005 | 0.001 | |
5.024 | 2.072 | 6.635 | 7.879 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】直角三角形中,是的中点,是线段上一个动点,且,如图所示,沿将翻折至,使得平面平面.
(1)当时,证明:平面;
(2)是否存在,使得与平面所成的角的正弦值是?若存在,求出的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在“新零售”模式的背景下,某大型零售公司为推广线下分店,计划在市区开设分店,为了确定在该区设分店的个数,该公司对该市开设分店的其他区的数据做了初步处理后得到下列表格.记表示在各区开设分店的个数,表示这个分店的年收入之和.
(1)该公司已经过初步判断,可用线性回归模型拟合与的关系,求关于的线性回归方程;
(2)假设该公司在区获得的总年利润(单位:百万元)与,之间的关系为,请结合(1)中的线性回归方程,估算该公司在区开设多少个分店时,才能使区平均每个分店的年利润最大?
参考公式:回归直线方程为,其中,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校倡导为特困学生募捐,要求在自动购水机处每购买一瓶矿泉水,便自觉向捐款箱中至少投入一元钱.现统计了连续5天的售出矿泉水箱数和收入情况,列表如下:
售出水量(单位:箱) | 7 | 6 | 6 | 5 | 6 |
收入(单位:元) | 165 | 142 | 148 | 125 | 150 |
学校计划将捐款以奖学金的形式奖励给品学兼优的特困生,规定:特困生综合考核前20名,获一等奖学金500元;综合考核21-50名,获二等奖学金300元;综合考核50名以后的不获得奖学金.
(1)若与成线性相关,则某天售出9箱水时,预计收入为多少元?
(2)甲乙两名学生获一等奖学金的概率均为,获二等奖学金的概率均为,不获得奖学金的概率均为,已知甲乙两名学生获得哪个等级的奖学金相互独立,求甲乙两名学生所获得奖学金之和的分布列及数学期望;
附:回归方程,其中.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com