精英家教网 > 高中数学 > 题目详情
已知函数,设F(x)=f(x)+g(x).
(1)求F(x)的单调区间;
(2)若以,图象上任意一点P(x,y)为切点的切线的斜率k≤1恒成立,求实数a的最小值;
(3)是否存在实数m,使得函数的图象与q(x)=f(1+x2)的图象恰好有四个不同的交点?若存在,求出m的取值范围,若不存在,说明理由.
【答案】分析:(1)先由f(x)和g(x)构造得到F(x)的解析式,利用导数大于0得增区间,小于0得减区间.
(2) 切线的斜率k≤1恒成立即导数小于等于1恒成立,从而建立起a与x的关系式,利用恒成立求得a.
 (3)p(x)与q(x)的图象有四个不同的交点转化成方程有四个不同的根,分离出m后,转化成新函数的最大值和最小值.
解答:解.(1)F

∵a>0,由F'(x)>0⇒x∈(2a,+∞),
由F'(x)<0⇒x∈(0,2a).
∴F(x)的单调递减区间为(0,2a),
单调递增区间为(2a,+∞)
(2)


所以实数a的最小值为
(3)若的图象
与q(x)=f(1+x2)=ln(x2+1)的图象恰有四个不同交点,
有四个不同的根,
亦即有四个不同的根.


当x变化时G'(x).G(x)的变化情况如下表:

由表格知:
又因为可知,当时,
方程有四个不同的解.
的图象与
y=f(1+x2)=ln(x2+1)的图象恰有四个不同的交点.
点评:本题是个难题,主要考查了导数在函数单调性和最值中的应用,同时考查了导数的几何意义和恒成立问题.
注意函数的定义域,分离参数在解决恒成立问题中的应用.
练习册系列答案
相关习题

科目:高中数学 来源:2011-2012年江西省南昌二中高三(上)第三次月考数学试卷(理科)(解析版) 题型:选择题

已知函数,设f(x)的最大值、最小值分别为m,n,若m-n<1,则正整数a的取值个数是( )
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中数学 来源:2010-2011学年江苏省连云港市东海县高级中学高三(上)期末数学模拟试卷(一)(解析版) 题型:解答题

已知函数,设F(x)=f(x)+g(x)
(1)求F(x)的单调区间;
(2)若以y=F(x)(x∈(0,3])图象上任意一点P(x,y)为切点的切线的斜率恒成立,求实数a的最小值;
(3)若对所有的x∈[e,+∞)都有xf(x)≥ax-a成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2013年上海市徐汇、松江、金山区高考数学二模试卷(文科)(解析版) 题型:选择题

已知函数,设F(x)=x2•f(x),则F(x)是( )
A.奇函数,在(-∞,+∞)上单调递减
B.奇函数,在(-∞,+∞)上单调递增
C.偶函数,在(-∞,0)上递减,在(0,+∞)上递增
D.偶函数,在(-∞,0)上递增,在(0,+∞)上递减

查看答案和解析>>

科目:高中数学 来源:2011年江苏省苏北四市高三第二次联考数学模拟试卷(一)(解析版) 题型:解答题

已知函数,设F(x)=f(x)+g(x)
(1)求F(x)的单调区间;
(2)若以y=F(x)(x∈(0,3])图象上任意一点P(x,y)为切点的切线的斜率恒成立,求实数a的最小值;
(3)若对所有的x∈[e,+∞)都有xf(x)≥ax-a成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案