精英家教网 > 高中数学 > 题目详情
已知椭圆C:(a>b>0)的离心率,且过点(0,1).
(1)求椭圆C的方程;
(2)如果直线x=t(t∈R)与椭圆相交于A、B,若,求证:直线EA与直线BD的交点K必在一条确定的双曲线上;
(3)若直线l经过椭圆C的左焦点交椭圆C于P、Q两点,O为坐标原点,且,求直线l的方程.
【答案】分析:(1)利用椭圆的标准方程、离心率及参数a、b、c的关系即可得出;
(2)利用直线的点斜式、点在圆锥曲线上满足的条件及双曲线的意义即可证明;
(3)把直线的方程与椭圆的方程联立得到根与系数的关系并利用已知条件即可得出.
解答:解:(1)依题意有:,又a2=c2+1,
解得:a=2,c=1,
故椭圆C的方程为:
(2)依题意可设A(t,y),B(t,-y),K(x,y).且有

,由得:
代入即得,即为:
所以直线EA与直线BD的交点K必在双曲线上.
(3)(A)当直线l的斜率不存在时,,此时,不满足要求;
(B)当直线l的斜率存在时设为k,则直线l为:y=k(x+1),代入得:(1+2k2)x2+4k2x+2k2-2=0,
得:
即:
则:
解得:k2=1⇒k=±1;
直线l过椭圆C的左焦点,故恒有两个交点,则k=±1满足要求,
故直线l的方程为:y=x+1或y=-x-1.
点评:熟练掌握圆锥曲线的定义及性质、直线的点斜式、点在圆锥曲线上满足的条件、直线与椭圆相交问题的解法、根与系数的关系是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源:2010-2011学年福建省龙岩市高三(上)期末质量检查一级达标数学试卷(文科)(解析版) 题型:解答题

已知椭圆C: (a>b>0)的左、右焦点分别为F1(-1,0)、F2(1,0),离心率为
(Ⅰ)求椭圆C的方程;
(Ⅱ)已知一直线l过椭圆C的右焦点F2,交椭圆于点A、B.
(ⅰ)若满足(O为坐标原点),求△AOB的面积;
(ⅱ)当直线l与两坐标轴都不垂直时,在x轴上是否总存在一点P,使得直线PA、PB的倾斜角互为补角?若存在,求出P坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2013年全国普通高等学校招生统一考试理科数学(四川卷解析版) 题型:解答题

(13分)已知椭圆C:(a>b>0)的两个焦点分别为F1(﹣1,0),F2(1,0),且椭圆C经过点

(I)求椭圆C的离心率:

(II)设过点A(0,2)的直线l与椭圆C交于M,N两点,点Q是线段MN上的点,且,求点Q的轨迹方程.

 

查看答案和解析>>

科目:高中数学 来源:2014届甘肃武威六中高二12月学段检测文科数学试题(解析版) 题型:解答题

(12分)已知椭圆C:(a>b>0)的一个顶点为A(2,0),离心率为,直线y=k(x-1)与椭圆C交于不同的两点M、N.

 ①求椭圆C的方程.

 ②当⊿AMN的面积为时,求k的值.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江西省高三第七次月考理科数学 题型:解答题

已知椭圆C:+=1(a>b>0),直线y=x+与以原点为圆心,以椭圆C的短半轴长为半径的圆相切,F1,F2为其左、右焦点,P为椭圆C上任一点,△F1PF2的重心为G,内心为I,且IG∥F1F2。⑴求椭圆C的方程。⑵若直线L:y=kx+m(k≠0)与椭圆C交于不同两点A,B且线段AB的垂直平分线过定点C(,0)求实数k的取值范围。

 

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年浙江省高三上学期第三次月考数学文卷 题型:选择题

已知椭圆C:(a>b>0)的离心率为,过右焦点F且斜率为kk>0)的直线与椭圆C相交于A、B两点,若。则 (    ) 

(A)1     (B)2      (C)      (D)

 

查看答案和解析>>

同步练习册答案