如图,在四棱锥
中,底面ABCD是正方形,侧棱
底面ABCD,
,E是PC的中点.
![]()
(Ⅰ)证明
平面EDB;
(Ⅱ)求EB与底面ABCD所成的角的正切值.
(Ⅰ)见解析;(Ⅱ)
.
【解析】
试题分析:(Ⅰ)令AC、BD交于点O,连接OE,证明OE∥AP,即可证明AP∥面BDE;(Ⅱ)先找到直线与平面所成的角,令F是CD中点,又E是PC中点,连结EF,BF,可以证明EF⊥面ABCD,故∠EBF为面BE与面ABCD所成的角,在Rt⊿BEF中求出其正切值.
试题解析:(Ⅰ)令AC、BD交于点O,连接OE,∵O是AC中点,又E是PC中点
∴ OE∥AP 3分
又OE
面BDE,AP
面BDE
5分
∴AP∥面BDE 6分
(Ⅱ)令F是CD中点,又E是PC中点,连结EF,BF
∴EF∥PD,又PD⊥面ABCD
∴EF⊥面ABCD 8分
∴∠EBF为面BE与面ABCD所成的角.
令PD=CD=2a
则CD=EF=a, BF=
10分
在Rt⊿BEF中,![]()
故BE与面ABCD所成角的正切是
.
12分
考点:线面平行的判定、直线与平面所成的角、勾股定理.
科目:高中数学 来源:2010-2011年广西省桂林中学高二下学期期中考试数学 题型:解答题
((本小题满分12分)
如图,在四棱锥
中,底面
是矩形.已知
.![]()
(1)证明
平面
;
(2)求异面直线
与
所成的角的大小;
(3)求二面角
的大小.
查看答案和解析>>
科目:高中数学 来源:2012届福建省三明市高三第一学期测试理科数学试卷 题型:解答题
如图,在四棱锥
中,底面
是菱形,
,
,
,
平面
,
是
的中点,
是
的中点.
(Ⅰ) 求证:
∥平面
;
(Ⅱ)求证:平面
⊥平面
;
(Ⅲ)求平面
与平面
所成的锐二面角的大小.
![]()
查看答案和解析>>
科目:高中数学 来源:2013届上海市高二年级期终考试数学 题型:解答题
(本题满分16分)
如图,在四棱锥
中,底面
是矩形.已知
.
(1)证明
平面
;
(2)求异面直线
与
所成的角的大小;
(3)求二面角
的大小.
![]()
查看答案和解析>>
科目:高中数学 来源:2010年江苏省高二下学期期末考试附加卷数学卷 题型:解答题
如图,在四棱锥
中,底面
是正方形,侧棱
,
为
中点,作
交
于![]()
![]()
(1)求PF:FB的值
(2)求平面
与平面
所成的锐二面角的正弦值。
查看答案和解析>>
科目:高中数学 来源:2011届浙江省高三6月考前冲刺卷数学理 题型:解答题
(本小题满分14分)
如图,在四棱锥
中,底面
为平行四边形,
平面
,![]()
![]()
在棱
上.
![]()
(Ⅰ)当
时,求证
平面![]()
(Ⅱ)当二面角
的大小为
时,求直线
与平面
所成角的正弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com