精英家教网 > 高中数学 > 题目详情

(本小题满分14分)

     如图,已知正三棱柱的底面边长是是侧棱的中点,直线与侧面所成的角为

 

  (1)求此正三棱柱的侧棱长;

  (2)求二面角的正切值;

  (3)求点到平面的距离.

 

【答案】

(1)(2)3(3)

【解析】

(1)设正三棱柱的侧棱长为. 取中点,连结.

∵△是正三角形,∴.                        ...........2分

又底面侧面,且交线为,

侧面. 连结

则直线与侧面所成的角为

中,,解得. …………………4分

(2)过,连结,∵侧面,∴.

为二面角的平面角.在中,

..........6分

,∴,又..........8分

∴在中,.

故二面角的正切值为3.                         ……………9分

(3) 由(2)可知,平面,∴平面平面,且交线为

∴过,则平面.

中, …………………12分

中点,∴点到平面的距离为. …………………14分

(注:(2)、(3)也可用向量法求解,(3)还可以用等体积法)

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•广东模拟)(本小题满分14分 已知函数f(x)=
3
sin2x+2sin(
π
4
+x)cos(
π
4
+x)

(I)化简f(x)的表达式,并求f(x)的最小正周期;
(II)当x∈[0,
π
2
]  时,求函数f(x)
的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分14分)设椭圆C1的方程为(ab>0),曲线C2的方程为y=,且曲线C1C2在第一象限内只有一个公共点P。(1)试用a表示点P的坐标;(2)设AB是椭圆C1的两个焦点,当a变化时,求△ABP的面积函数S(a)的值域;(3)记min{y1,y2,……,yn}为y1,y2,……,yn中最小的一个。设g(a)是以椭圆C1的半焦距为边长的正方形的面积,试求函数f(a)=min{g(a), S(a)}的表达式。

查看答案和解析>>

科目:高中数学 来源:2011年江西省抚州市教研室高二上学期期末数学理卷(A) 题型:解答题

(本小题满分14分)
已知=2,点()在函数的图像上,其中=.
(1)证明:数列}是等比数列;
(2)设,求及数列{}的通项公式;
(3)记,求数列{}的前n项和,并证明.

查看答案和解析>>

科目:高中数学 来源:2015届山东省威海市高一上学期期末考试数学试卷(解析版) 题型:解答题

 (本小题满分14分)

某网店对一应季商品过去20天的销售价格及销售量进行了监测统计发现,第天()的销售价格(单位:元)为,第天的销售量为,已知该商品成本为每件25元.

(Ⅰ)写出销售额关于第天的函数关系式;

(Ⅱ)求该商品第7天的利润;

(Ⅲ)该商品第几天的利润最大?并求出最大利润.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年广东省高三下学期第一次月考文科数学试卷(解析版) 题型:解答题

(本小题满分14分)已知的图像在点处的切线与直线平行.

⑴ 求满足的关系式;

⑵ 若上恒成立,求的取值范围;

⑶ 证明:

 

查看答案和解析>>

同步练习册答案