精英家教网 > 高中数学 > 题目详情
6.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),点M,N,F分别为椭圆C的左顶点、上顶点、左焦点,若∠MFN=∠NMF+90°,则椭圆C的离心率是(  )
A.$\frac{\sqrt{5}-1}{2}$B.$\frac{\sqrt{3}-1}{2}$C.$\frac{\sqrt{2}-1}{2}$D.$\frac{\sqrt{3}}{2}$

分析 由题意画出图形,结合已知可得a,b,c的关系,进一步结合隐含条件可得关于离心率e的方程求解.

解答 解:如图,

tan∠NMF=$\frac{b}{a}$,tan∠NFO=$\frac{b}{c}$,
∵∠MFN=∠NMF+90°,∴∠NFO=180°-MFN=90°-∠NMF,
即tan∠NFO=$\frac{1}{tan∠NMF}$,
∴$\frac{b}{c}=\frac{a}{b}$,则b2=a2-c2=ac,
∴e2+e-1=0,得e=$\frac{\sqrt{5}-1}{2}$.
故选:A.

点评 本题考查椭圆的简单性质,考查了数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=1,$\overrightarrow{a}$⊥$\overrightarrow{b}$,则向量2$\overrightarrow{b}$-$\overrightarrow{a}$在向量$\overrightarrow{a}$方向上的投影为(  )
A.1B.$\frac{\sqrt{7}}{7}$C.-1D.-$\frac{\sqrt{7}}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知常数 a、b 满足 a>1>b>0,若f(x)=lg(ax-bx),x∈(0,+∞)
(1)证明 y=f(x)在(0,+∞)内是增函数;
(2)若 f(x)恰在(1,+∞)内取正值,且 f(2)=lg2,求 a、b 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知等比数列{an}的前n项和为Sn,且2n+1,Sn,a成等差数列(n∈N*).
(1)求a的值及数列{an}的通项公式;
(2)若bn=-(an+1)an,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数y=$\sqrt{3-x}$+log2(x+1)的定义域为(  )
A.[-1,3)B.(-1,3)C.[-1,3]D.(-1,3]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若α,β为锐角,cos(α+β)=-$\frac{5}{13}$,sinβ=$\frac{3}{5}$,则sin(α+2β)=(  )
A.$\frac{33}{65}$B.-$\frac{63}{65}$C.-$\frac{33}{65}$D.$\frac{63}{65}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.抛物线的顶点是椭圆$\frac{x^2}{25}+\frac{y^2}{16}=1$的中心,焦点是椭圆的右焦点,抛物线方程为y2=12x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在△ABC中,(2a-c)cosB=bcosC,sin2A=sin2B+sin2C-λsinBsinC.
(1)求角B的大小;
(2)若$λ=\sqrt{3}$,试判断△ABC的形状;
(3)若△ABC为钝角三角形,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.某公司从大学招收毕业生,经过综合测试,录用了14名男生和6名女生,这20名毕业生的测试成绩如茎叶图所示(单位:分).公司规定:成绩在180分以上者到甲部门工作,180分以下者到乙部门工作,另外只有成绩高于180分的男生才能担任助理工作.                          
(1)如果用分层抽样的方法从甲部门人选和乙部门人选中选取8人,再从这8人中选3人,那么至少有一人是甲部门人选的概率是多少?
(2)若从所有甲部门人选中随机选3人,用X表示所选人员中能担任助理工作的人数,写出X的分布列,并求出X的数学期望.

查看答案和解析>>

同步练习册答案