精英家教网 > 高中数学 > 题目详情
4.已知常数 a、b 满足 a>1>b>0,若f(x)=lg(ax-bx),x∈(0,+∞)
(1)证明 y=f(x)在(0,+∞)内是增函数;
(2)若 f(x)恰在(1,+∞)内取正值,且 f(2)=lg2,求 a、b 的值.

分析 (1)根据定义法证明函数单调性的步骤:取值、作差、变形、定号、下结论进行证明,利用对数的运算性质、对数函数的性质、题意进行化简、变形;
(2)根据函数的单调性和题意可得f(1)=0,结合f(2)=lg2列出方程,联立后由条件求出a、b的值.

解答 证明:(1)任取0<x1<x2
$f({x}_{1})-f({x}_{2})=lg({a}^{{x}_{1}}-{b}^{{x}_{1}})-lg({a}^{{x}_{2}}-{b}^{{x}_{2}})$=$lg\frac{{{a^{x_1}}-{b^{x_1}}}}{{{a^{x_2}}-{b^{x_2}}}}$,
∵x2>x1,a>1>b>0,∴${a^{x_2}}-{a^{x_1}}>0,{b^{x_1}}-{b^{x_2}}>0$,
∴${a^{x_2}}-{b^{x_2}}-({a^{x_1}}-{b^{x_1}})={a^{x_2}}-{a^{x_1}}+{b^{x_1}}-{b^{x_2}}>0$,
${a}^{{x}_{2}}-{b}^{{x}_{2}}>{a}^{{x}_{1}}-{b}^{{x}_{1}}$,
∴$0<\frac{{a}^{{x}_{1}}-{b}^{{x}_{1}}}{{a}^{{x}_{2}}-{b}^{{x}_{2}}}<1$,则$lg\frac{{a}^{{x}_{1}}-{b}^{{x}_{1}}}{{a}^{{x}_{2}}-{b}^{{x}_{2}}}<0$,
即f(x1)<f(x2),函数y=f(x)在(0,+∞)内是增函数;
解:(2)由(1)可知:f(x)在(1,+∞)上是增函数,
∵f(x)恰在(1,+∞)取正值,
∴f(1)=lg(a-b)=0,则a-b=1,①
∵f(2)=lg(a2-b2)=lg2,∴a2-b2=2,②
联立①②和a>1>b>0解得,
$a=\frac{3}{2},b=\frac{1}{2}$.

点评 本题考查了定义法证明函数单调性的步骤:取值、作差、变形、定号、下结论,对数的运算性质、对数函数的性质,以及方程思想,考查化简、变形能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.若双曲线$\frac{{y}^{2}}{8}$-$\frac{{x}^{2}}{m}$=1的离心率为2,则m=24.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知过定点P(-4,0)的直线l与曲线y=$\sqrt{4-{x}^{2}}$相交于A,B两点,O为坐标原点,当△AOB的面积最大时,直线l的斜率为(  )
A.$\frac{\sqrt{2}}{4}$B.2C.$\frac{\sqrt{7}}{7}$D.$\frac{\sqrt{14}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}x=\frac{3}{2}cosα\\ y=sinα\end{array}\right.$(α为参数),M为C1上的动点,P点满足$\overrightarrow{OP}$=2$\overrightarrow{OM}$,点P的轨迹为曲线C2
(Ⅰ)求C2的普通方程;
(Ⅱ) 设点(x,y)在曲线C2上,求x+2y的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知a>0,则“关于x的方程ax=b解集为{x0}”的充要条件的序号是③.
①存在x∈R,$\frac{1}{2}$ax2-bx≥$\frac{1}{2}$ax02-bx0
②存在x∈R,$\frac{1}{2}$ax2-bx≤$\frac{1}{2}$ax02-bx0
③任意x∈R,$\frac{1}{2}$ax2-bx≥$\frac{1}{2}$ax02-bx0
④任意x∈R,$\frac{1}{2}$ax2-bx≤$\frac{1}{2}$ax02-bx0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知F1,F2分别是椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左右焦点,M,N分别为其左右顶点.过F2的直线l与椭圆相交于A,B两点.当直线l与x轴垂直时,四边形AMBN的面积等于2,且满足|$\overrightarrow{M{F}_{2}}$|=$\sqrt{2}$|$\overrightarrow{AB}$|+|$\overrightarrow{{F}_{2}N}$|.
(1)求此椭圆的方程;
(2)当直线l绕着焦点F2旋转不与x轴重合时,求$\overrightarrow{AM}$•$\overrightarrow{AN}$+$\overrightarrow{BM}$•$\overrightarrow{BN}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=$\frac{1}{2}$kx2-2x+klnx(k∈R).
(1)当k=$\frac{1}{2}$时,求函数f(x)在[$\frac{1}{2}$,4]上的最大值;
(2)若函数f(x)在区间($\frac{1}{2}$,4)上不单调,求k的取值范围;
(3)当k=2时,设[a,b]⊆[1,2],其中a<b,试证明:函数φ(x)=f′(x)-$\frac{f(b)-f(a)}{b-a}$在区间(a,b)上有唯一的零点.(参考公式:若h(x)=f(g(x)),则h′(x)=f′(g(x))•g′(x))

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),点M,N,F分别为椭圆C的左顶点、上顶点、左焦点,若∠MFN=∠NMF+90°,则椭圆C的离心率是(  )
A.$\frac{\sqrt{5}-1}{2}$B.$\frac{\sqrt{3}-1}{2}$C.$\frac{\sqrt{2}-1}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若实数a,b满足$\frac{1}{a}+\frac{2}{b}=2\sqrt{ab}$,则ab的最小值为(  )
A.$\sqrt{2}$B.2C.$2\sqrt{2}$D.4

查看答案和解析>>

同步练习册答案