精英家教网 > 高中数学 > 题目详情
7.若实数a,b满足$\frac{1}{a}+\frac{2}{b}=2\sqrt{ab}$,则ab的最小值为(  )
A.$\sqrt{2}$B.2C.$2\sqrt{2}$D.4

分析 利用基本不等式的性质即可得出.

解答 解:实数满足$\frac{1}{a}+\frac{2}{b}=2\sqrt{ab}$,∴a,b>0,
∴$2\sqrt{ab}$≥2$\sqrt{\frac{1}{a}•\frac{2}{b}}$,化为:ab$≥\sqrt{2}$,当且仅当b=2a=${2}^{\frac{3}{4}}$.
则ab的最小值为$\sqrt{2}$.
故选:A.

点评 本题考查了基本不等式的性质,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知常数 a、b 满足 a>1>b>0,若f(x)=lg(ax-bx),x∈(0,+∞)
(1)证明 y=f(x)在(0,+∞)内是增函数;
(2)若 f(x)恰在(1,+∞)内取正值,且 f(2)=lg2,求 a、b 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.抛物线的顶点是椭圆$\frac{x^2}{25}+\frac{y^2}{16}=1$的中心,焦点是椭圆的右焦点,抛物线方程为y2=12x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在△ABC中,(2a-c)cosB=bcosC,sin2A=sin2B+sin2C-λsinBsinC.
(1)求角B的大小;
(2)若$λ=\sqrt{3}$,试判断△ABC的形状;
(3)若△ABC为钝角三角形,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数f(x)=4x2-mx+5在区间[-2,+∞)上是增函数,则有(  )
A.f(1)≥25B.f(1)=25C.f(1)≤25D.f(1)>25

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为(  )
A.16B.$24+8\sqrt{5}$C.48D.$24+16\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下面是函数y=f(x)的部分对应值,则f[f($\sqrt{3}$)]等于(  )
x-3-2-10$\sqrt{2}$$\sqrt{3}$$\sqrt{5}$
y$\sqrt{3}$$\sqrt{2}$0$\sqrt{5}$-30-1
A.0B.$\sqrt{2}$C.$\sqrt{3}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.某公司从大学招收毕业生,经过综合测试,录用了14名男生和6名女生,这20名毕业生的测试成绩如茎叶图所示(单位:分).公司规定:成绩在180分以上者到甲部门工作,180分以下者到乙部门工作,另外只有成绩高于180分的男生才能担任助理工作.                          
(1)如果用分层抽样的方法从甲部门人选和乙部门人选中选取8人,再从这8人中选3人,那么至少有一人是甲部门人选的概率是多少?
(2)若从所有甲部门人选中随机选3人,用X表示所选人员中能担任助理工作的人数,写出X的分布列,并求出X的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在五面体ACDEF中,已知DE⊥平面ABCD,AD∥BC,∠BAD=60°,AB=4,DE=EF=2.
(1)求证:BC∥EF;
(2)求三棱锥B-DEF的体积.

查看答案和解析>>

同步练习册答案