精英家教网 > 高中数学 > 题目详情
在平面直角坐标系xOy中,椭圆C的中心为原点,焦点F1,F2在x轴上,离心率为.过F1的直线交椭圆C于A,B两点,且△ABF2的周长为8.过定点M(0,3)的直线l1与椭圆C交于G,H两点(点G在点M,H之间).
(1)求椭圆C的方程;
(2)设直线l1的斜率k>0,在x轴上是否存在点P(m,0),使得以PG,PH为邻边的平行四边形为菱形?如果存在,求出m的取值范围;如果不存在,请说明理由.
(1) =1(2)
(1)设椭圆的方程为=1(a>b>0),由离心率e=,△ABF2的周长为|AF1|+|AF2|+|BF1|+|BF2|=4a=8,得a=2,c=1,则b2=a2-c2=3.
所以椭圆C的方程为=1.
(2)由题意可知,直线l1的方程为y=kx+3(k>0).
得(3+4k2)x2+24kx+24=0,①
Δ=(24k)2-4×24×(3+4k2)>0,解得k>.
设椭圆的弦GH的中点为N(x0,y0),则“在x轴上是否存在点P(m,0),使得以PG,PH为邻边的平行四边形为菱形”等价于“在x轴上是否存在点P(m,0),使得PN⊥l1”.
设G(x1,y1),H(x2,y2),由韦达定理,得x1+x2=-
则x0=-,所以y0=kx0+3=
即N,kPN=-.
从而-·k=-1,
解得m=-.
又因为m′(k)=>0,
所以函数m=-在定义域上单调递增,且mmin=m=-,即m∈.
故存在满足条件的点P(m,0),m的取值范围为
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

己知⊙O:x2+y2=6,P为⊙O上动点,过P作PM⊥x轴于M,N为PM上一点,且
(1)求点N的轨迹C的方程;
(2)若A(2,1),B(3,0),过B的直线与曲线C相交于D、E两点,则是否为定值?若是,求出该值;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆过点,且离心率.

(1)求椭圆的标准方程;
(2)若直线与椭圆相交于两点(不是左右顶点),椭圆的右顶点为,且满足,试判断直线是否过定点,若过定点,求出该定点的坐标;若不过定点,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的中心在坐标原点O,左顶点,离心率为右焦点,过焦点的直线交椭圆两点(不同于点).
(1)求椭圆的方程;
(2)当的面积时,求直线PQ的方程;
(3)求的范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设椭圆+=1(a>b>0)的左焦点为F,离心率为,过点F且与x轴垂直的直线被椭圆截得的线段长为.
(1)求椭圆的方程;
(2)设A,B分别为椭圆的左、右顶点,过点F且斜率为k的直线与椭圆交于C,D两点.若·+·=8,求k的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知任意k∈R,直线y-kx-1=0与椭圆+=1恒有公共点,则实数m的取值范围是(  )
A.(0,1)B.(0,5)
C.[1,5)∪(5,+∞)D.[1,5)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆C1=1与双曲线C2=1共焦点,则椭圆C1的离心率e的取值范围为(  )
A.B.C.(0,1)D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆=1的左焦点为F1,右顶点为A,上顶点为B.若∠F1BA=90°,则椭圆的离心率是(  )
A.  B.  C.  D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知中心在原点的椭圆与双曲线有公共焦点,且左、右焦点分别为F1F2,两条曲线在第一象限的交点记为P,△PF1F2是以PF1为底边的等腰三角形.若|PF1|=10,椭圆与双曲线的离心率分别为e1e2,则e1·e2的取值范围是(  )
A.0,B.C.,+∞D.,+∞

查看答案和解析>>

同步练习册答案