精英家教网 > 高中数学 > 题目详情
16.椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的一个焦点与短轴的两端点的连线互相垂直,且此焦点和长轴上较近的端点距离为4$\sqrt{3}$-2$\sqrt{6}$,则此椭圆方程为$\frac{{x}^{2}}{48}$+$\frac{{y}^{2}}{24}$=1.

分析 由题意可得b=c,a-c=4$\sqrt{3}$-2$\sqrt{6}$,又a2-c2=b2,解方程可得a,b的值,进而得到椭圆方程.

解答 解:一个焦点与短轴的两端点的连线互相垂直,
即有焦点与短轴的两端点构成一个等腰直角三角形,
即有b=c,
又此焦点和长轴上较近的端点距离为4$\sqrt{3}$-2$\sqrt{6}$,
即为a-c=4$\sqrt{3}$-2$\sqrt{6}$,
又a2-c2=b2
解得a=4$\sqrt{3}$,b=c=2$\sqrt{6}$,
则椭圆方程为$\frac{{x}^{2}}{48}$+$\frac{{y}^{2}}{24}$=1.
故答案为:$\frac{{x}^{2}}{48}$+$\frac{{y}^{2}}{24}$=1.

点评 本题考查椭圆的方程和性质,主要考查椭圆方程的求法,注意运用方程的思想方法,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.如图|$\overrightarrow{OA}|=|\overrightarrow{OB}$|=1,$\overrightarrow{OA}$与$\overrightarrow{OB}$的夹角为120°,$\overrightarrow{OC}$与$\overrightarrow{OA}$的夹角为30°,|$\overrightarrow{OC}$|=5,则$\overrightarrow{OC}$=$\frac{10\sqrt{3}}{3}$$\overrightarrow{OA}$+$\frac{5\sqrt{3}}{3}$$\overrightarrow{OB}$.(用$\overrightarrow{OA}和\overrightarrow{OB}$表示)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知数列{an}的前n项和为Sn=n2+1,数列{bn}满足:bn=$\frac{2}{{a}_{n}+1}$,前n项和为Tn.设Cn=T2n+1-Tn
(1)求数列{bn}的通项公式.
(2)求证:数列{Cn}是单调递减数列;
(3)若对n≥k时.总有Cn<$\frac{16}{21}$成立.求自然数k的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数y=$\frac{{x}^{3}}{{e}^{|x|}}$,则其图象为(  )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知一个底面是菱形的直棱柱的侧棱长为5,菱形的对角线的长分别是9和15,则这个棱柱的侧面积是(  )
A.30$\sqrt{34}$B.60$\sqrt{34}$C.30$\sqrt{34}$+135D.135

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.圆台的上、下底面面积分别为4和16,中截面把圆台分成两部分,则这两部分的体积之比为(  )
A.37:8B.8:27C.27:64D.19:37

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知集合M={1,-2,3},N={-4,5,6,-7},从两个集合中各取一个元素作为点的坐标,则在直角坐标系中第一,二象限不同点的个数为(  )
A.18B.14C.16D.10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设集合A为函数y=ln(-x2-2x+8)的定义域,集合B为函数y=x+$\frac{1}{x}$-1的值域.集合C为不等式(ax-$\frac{1}{a}$)(x+4)≤0的解集.
(1)求A∩B;
(2)若C⊆CRA,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.如图,在△ABC中,∠ACB的平分线CD交AB于D,$\overrightarrow{AC}$的模为2,$\overrightarrow{BC}$的模为3,$\overrightarrow{AD}$的模为1,那么$\overrightarrow{DB}$的模为$\frac{3}{2}$.

查看答案和解析>>

同步练习册答案