精英家教网 > 高中数学 > 题目详情
12.使得函数f(x)=log2x+x-5有零点的一个区间是(  )
A.(1,2)B.(2,3)C.(3,4)D.(4,5)

分析 由题意知函数f(x)=log2x+x-5在(0,+∞)上连续,再由函数的零点的判定定理求解.

解答 解:函数f(x)=log2x+x-5在(0,+∞)上连续,
f(3)=log23+3-5<0;
f(4)=2+4-5>0;
故函数f(x)=log2x+x-5的零点所在的区间是(3,4);
故选C.

点评 本题考查了函数的零点的判定定理的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.在平面直角坐标系xoy中,已知圆C与直线x+2y+1=0切于点(1,-1),且圆心在直线$y=\frac{1}{2}x$上.
(1)求圆C的方程; 
(2)判断直线l:x+y+2=0和圆C的位置关系;
(3)已知点B(-4,-2)设P和Q分别是直线l:x+y+2=0和圆C上的动点,求PB+PQ的最小值及此时点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数y=loga(x+1)+x2-2(0<a<1)的零点的个数为(  )
A.0B.1C.2D.无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.样本容量为100的频率分布直方图如图所示.根据样本的频率分布直方图估计样本数据落在[6,10)内的频数为a,样本数据落在[2,10)内的频率为b,则a,b分别是(  )
A.32,0.4B.8,0.1C.32,0.1D.8,0.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.有5名学生的数学和化学成绩如表所示:
学生学科ABCDE
数学成绩(x)8876736663
化学成绩(y)7865716461
(1)如果y与x具有相关关系,求线性回归方程;
(2)预测如果某学生数学成绩为79分,他的化学成绩为多少?
参考公式::$\hat b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}$,$\hat a=\overline y-\hat b\overline x$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知实数x满足$\sqrt{2}≤x≤8$,求函数y=(log2x-1)•(log2x-2)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知f(x)=(x-a)(x-3a)(其中a>0),g(x)=x2+1;条件p:实数x满足f(x)<0;条件q:实数x满足4<g′(x)≤6.
(1)若a=1,且“p∧q”为真,求实数x的取值范围;
(2)若q是p的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设α∈[-4,4],则关于x的方程x2+ax+1=0没有实根的概率是$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知圆C的圆心在直线y=x上,半径为5且过点A(4,5),B(1,6)两点
(1)求圆C的方程;
(2)过点M(-2,3)的直线l被圆C所截得的线段的长为8,求直线l的方程.

查看答案和解析>>

同步练习册答案