精英家教网 > 高中数学 > 题目详情
a=e-
2
,b=ln3,c=lnπ
,则a,b,c的大小关系为(  )
分析:利用对数函数y=lnx和指数函数y=ex的单调性即可得出.
解答:解:∵π>3,∴ln>ln3>1,∴c>b.
又∵a=e-
2
e0=1

∴c>b>a.
故选A.
点评:本题考查了对数函数y=lnx和指数函数y=ex的单调性,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知圆C:(x-1)2+y2=r2(r>1),设A为圆C与x轴负半轴的交点,过点A作圆C的弦AM,并使弦AM的中点恰好落在y轴上.
(1)当r在(1,+∞)内变化时,求点M的轨迹E的方程;
(2)设轨迹E的准线为l,N为l上的一个动点,过点N作轨迹E的两条切线,切点分别为P,Q.求证:直线PQ必经过x轴上的一个定点B,并写出点B的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,△ABC的内切圆与三边AB、BC、CA的切点分别为D、E、F,已知B(-
2
,0)
,C(
2
,0)
,内切圆圆心I(1,t).设A点的轨迹为L
(1)求L的方程;
(2)过点C作直线m交曲线L于不同的两点M、N,问在x轴上是否存在一个异于点C的定点Q.使
QM
QC
|
QM
|
=
QN
QC
|
QN
|
对任意的直线m都成立?若存在,求出Q的坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设点M(x,y)到直线x=4的距离与它到定点(1,0)的距离之比为2,并记点M的轨迹曲线为C.
(I)求曲线C的方程;
(II)设过定点(0,2)的直线l与曲线C交于不同的两点E,F,且∠EOF=90°(其中O为坐标原点),求直线l的斜率k的值;
(III)设A(2,0),B(0,
3
)是曲线C的两个顶点,直线y=mx(x>0)与线段AB相交于点D,与椭圆相交于E,F两点,求四边形AEBF面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在A、B、C、D四小题中只能选做2题,每小题10分,共计20分.解答应写出文字说明、证明过程或演算步骤.
A.选修4-1:几何证明选讲
如图,CP是圆O的切线,P为切点,直线CO交圆O于A,B两点,AD⊥CP,垂足为D.
求证:∠DAP=∠BAP.
B.选修4-2:矩阵与变换
设a>0,b>0,若矩阵A=
.
a0
0b
.
把圆C:x2+y2=1变换为椭圆E:
x2
4
+
y2
3
=1.
(1)求a,b的值;(2)求矩阵A的逆矩阵A-1
C.选修4-4:坐标系与参数方程在极坐标系中,已知圆C:ρ=4cosθ被直线l:ρsin(θ-\frac{π}{6})=a截得的弦长为2
3
求实数a的值.
D.选修4-5:不等式选讲已知a,b是正数,求证:a2+4b2+
1
ab
≥4.

查看答案和解析>>

科目:高中数学 来源: 题型:

B.选修4-2:矩阵与变换
设a>0,b>0,若矩阵A=
.
a0
0b
.
把圆C:x2+y2=1变换为椭圆E:
x2
4
+
y2
3
=1.
(1)求a,b的值;
(2)求矩阵A的逆矩阵A-1
C.选修4-4:坐标系与参数方程在极坐标系中,已知圆C:ρ=4cosθ被直线l:ρsin(θ-
π
6
)=a截得的弦长为2
3
,求实数a的值.

查看答案和解析>>

同步练习册答案