精英家教网 > 高中数学 > 题目详情

已知椭圆与双曲线2x2-2y2=1共焦点,且过(数学公式
(1)求椭圆的标准方程.
(2)求斜率为2的一组平行弦的中点轨迹方程.

解:(1)依题意得,将双曲线方程标准化为=1,则c=1.
∵椭圆与双曲线共焦点,∴设椭圆方程为=1,∵椭圆过(,0),
=2,∴椭圆方程为=1.
(2)依题意,设斜率为2的弦所在直线的方程为y=2x+b,弦的中点坐标为(x,y),则
y=2x+b 且 =1得,9x2+8xb+2b2-2=0,∴x1+x2=-
即x=-两式消掉b得 y=-x.
令△=0,64b2-36(2b2-2)=0,即b=±3,所以斜率为2且与椭圆相切的直线方程为y=2x±3
即当x=±时斜率为2的直线与椭圆相切.
所以平行弦得中点轨迹方程为:y=-x(-).
分析:(1)求出双曲线的焦点,由此设出椭圆方程,把点(,0)代入椭圆方程,求出待定系数即得所求的椭圆方程.
(2)设斜率为2的弦所在直线的方程为y=2x+b,弦的中点坐标为(x,y),把y=2x+b 代入椭圆的方程,利用一元二次方程根与系数的关系,求出轨迹方程为y=-x,求出直线y=2x+b 和椭圆相切时的b值,即得轨迹方程中自变量x
的范围.
点评:本题考查用待定系数法求椭圆的标准方程,以及简单性质的应用;求点的轨迹方程的方法,求轨迹方程中自变量x的范围,是解题的易错点.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出下列命题:
①已知椭圆
x2
16
+
y2
8
=1
的两个焦点为F1,F2,则这个椭圆上存在六个不同的点M,使得△F1MF2为直角三角形;
②已知直线l过抛物线y=2x2的焦点,且与这条抛物线交于A,B两点,则|AB|的最小值为2;
③若过双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)
的一个焦点作它的一条渐近线的垂线,垂足为M,O为坐标原点,则|OM|=a;
④已知⊙C1:x2+y2+2x=0,⊙C2:x2+y2+2y-1=0,则这两个圆恰有2条公切线.
其中正确命题的序号是
 
.(把你认为正确命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2004•宝山区一模)设直线2x-y+1=0与椭圆
x2
3
+
y2
4
=1
相交于A、B两点.
(1)线段AB中点M的坐标及线段AB的长;
(2)已知椭圆具有性质:设A、B是椭圆
x2
a2
+
y2
b2
=1
上的任意两点,M是线段AB的中点,若直线AB、OM的斜率都存在,并记为kAB,kOM,则kAB?kOM为定值.试对双曲线
x2
a2
-
y2
b2
=1
写出具有类似特性的性质,并加以证明.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

给出下列命题:
①已知椭圆
x2
16
+
y2
8
=1
的两个焦点为F1,F2,则这个椭圆上存在六个不同的点M,使得△F1MF2为直角三角形;
②已知直线l过抛物线y=2x2的焦点,且与这条抛物线交于A,B两点,则|AB|的最小值为2;
③若过双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)
的一个焦点作它的一条渐近线的垂线,垂足为M,O为坐标原点,则|OM|=a;
④已知⊙C1:x2+y2+2x=0,⊙C2:x2+y2+2y-1=0,则这两个圆恰有2条公切线.
其中正确命题的序号是______.(把你认为正确命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源:2010-2011学年安徽省巢湖市高三(上)质量检测数学试卷(理科)(解析版) 题型:填空题

给出下列命题:
①已知椭圆的两个焦点为F1,F2,则这个椭圆上存在六个不同的点M,使得△F1MF2为直角三角形;
②已知直线l过抛物线y=2x2的焦点,且与这条抛物线交于A,B两点,则|AB|的最小值为2;
③若过双曲线C:的一个焦点作它的一条渐近线的垂线,垂足为M,O为坐标原点,则|OM|=a;
④已知⊙C1:x2+y2+2x=0,⊙C2:x2+y2+2y-1=0,则这两个圆恰有2条公切线.
其中正确命题的序号是    .(把你认为正确命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源:2005年上海市宝山区高考数学一模试卷(解析版) 题型:解答题

设直线2x-y+1=0与椭圆相交于A、B两点.
(1)线段AB中点M的坐标及线段AB的长;
(2)已知椭圆具有性质:设A、B是椭圆上的任意两点,M是线段AB的中点,若直线AB、OM的斜率都存在,并记为kAB,kOM,则kAB?kOM为定值.试对双曲线写出具有类似特性的性质,并加以证明.

查看答案和解析>>

同步练习册答案