精英家教网 > 高中数学 > 题目详情
如图所示, 四棱锥PABCD的底面是边长为1的正方形,PACDPA = 1,PDEPD上一点,PE = 2ED
(Ⅰ)求证:PA 平面ABCD
(Ⅱ)求二面角D-ACE的余弦值;
(Ⅲ)在侧棱PC上是否存在一点F,使得BF // 平面AEC?若存在,指出F点的位置,并证明;若不存在,说明理由.
解:(Ⅰ) PA = PD = 1 ,PD = 2 ,
PA2 + AD2 = PD2, 即:PA AD      
又PA CD , AD , CD 相交于点D,
PA 平面ABCD                
(Ⅱ)过E作EG//PA 交AD于G,从而EG 平面ABCD,
且AG = 2GD , EG = PA = ,                                
连接BD交AC于O, 过G作GH//OD ,交AC于H,连接EH.
GH  AC ,
EH AC ,
EHG为二面角D-AC-E的平面角.                        
tanEHG = =
二面角D-AC-E的平面角的余弦值为
(Ⅲ)以AB , AD , PA为x轴、y轴、z轴建立空间直角坐标系.
则A(0 ,0, 0),B(1,0,0) ,C(1,1,0),P(0,0,1),E(0 ,),
 = (1,1,0),= (0 ,)                                                
设平面AEC的法向量= (x, y,z) ,
,即:
令y = 1 , 则 = (- 1,1, - 2 )                                   
假设侧棱PC上存在一点F, 且, (0≤λ≤1),
使得:BF//平面AEC,则= 0.
又因为:= (0 ,1,0)+ (-λ,-λ,λ)= (-λ,1-λ,λ),


所以存在PC的中点F, 使得BF//平面AEC.            
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图所示,四棱锥P-ABCD的底面为直角梯形,∠ADC=∠DCB=90°,AD=1,BC=3,PC=CD=2,PC⊥底面ABCD,E为AB的中点.
(Ⅰ)求证:平面PDE⊥平面PAC;
(Ⅱ)求二面角C-PD-E的大小;
(Ⅲ)求点B到平面PDE的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图所示,四棱锥P-ABCD的底面是一个矩形,AB=3.AD=1.又PA⊥AB,PA=4,
∠PAD=60°.求:
(1)四棱锥P-ABCD的体积.
(2)二面角P-BC-D的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图所示,四棱锥P-ABCD的底面ABCD是半径为R的圆的内接四边形,其中BD是圆的直径,∠ABD=60°,∠BDC=45°,△ADP~△BAD.
(1)求线段PD的长;
(2)若PC=
11
R
,求三棱锥P-ABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•烟台一模)如图所示,四棱锥P-ABCD中,ABCD为正方形,PA⊥AD,E,F,G分别是线段PA,PD,CD的中点.
求证:
(1)BC∥平面EFG;
(2)平面EFG⊥平面PAB.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,四棱锥P-ABCD底面是直角梯形,BA⊥AD,CD⊥AD,CD=2AB,PA⊥底面ABCD,E为PC的中点,PA=AD=AB=1.
(1)证明:EB∥平面PAD;
(2)证明:BE⊥平面PDC;
(3)求三棱锥B-PDC的体积V.

查看答案和解析>>

同步练习册答案