精英家教网 > 高中数学 > 题目详情
1.已知E,F为双曲线$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(0<a<b)$的左右焦点,抛物线y2=2px(p>0)与双曲线有公共的焦点F,且与双曲线交于A、B不同两点,若5|AF|=4|EF|,则双曲线的离心率为(  )
A.$4+\sqrt{7}$B.$4-\sqrt{3}$C.$4+\sqrt{3}$D.$4-\sqrt{7}$

分析 根据双曲线的定义求出|BE|=10a,|BF|=8a,结合抛物线的定义求出交点B的纵坐标,结合直角三角形的边角关系建立方程进行求解即可.

解答 解:根据双曲线和抛物线的对称性得|BF|=|AF|=$\frac{4}{5}$|BE|,
∵|BE|-|BF|=2a,
∴|BE|-$\frac{4}{5}$|BE|=|BE|=2a,
则|BE|=10a,|BF|=8a,
∵抛物线y2=2px(p>0)与双曲线有公共的焦点F,
∴$\frac{p}{2}$=c,且x=-c是抛物线的准线,
则|BD|=|BF|=8a,
设B(x,y),则由抛物线的性质得x+c=8a,即x=8a-c,
代入抛物线方程y2=2px=4cx得y2=4c(8a-c),
则|DE|2=y2=4c(8a-c),
在直角三角形BDE中,
BE2=DE2+BD2
即100a2=64a2+4c(8a-c),
即36a2-32ac+4c2=0,
即c2-8ac+9a2=0,
解e2-8e+9=0,
得e=$\frac{8±\sqrt{64-36}}{2}$=4±$\sqrt{7}$,
∵0<a<b,
∴e=$\frac{c}{a}$=$\sqrt{1+\frac{{b}^{2}}{{a}^{2}}}$>$\sqrt{2}$,
∴e=4+$\sqrt{7}$,
故选:A

点评 本题主要考查双曲线离心率的计算,根据抛物线和双曲线的定义建立方程关系,求出a,c的关系是解决本题的关键.综合性较强,有一定的难度.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=2cos2x+$\sqrt{3}$sin2x,x∈R.
(1)求函数f(x)的最小正周期及单调递增区间;
(2)当x∈($\frac{π}{12}$,$\frac{π}{3}$)时,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.学校计划在周一至周四的艺术节上展演《雷雨》、《茶馆》、《天籁》和《马蹄声碎》四部话剧,每天一部.受多种因素影响,话剧《雷雨》不能在周一和周四上演;《茶馆》不能在周一和周三上演;《天籁》不能在周三和周四上演;《马蹄声碎》不能在周一和周四上演.那么下列说法正确的是(  )
A.《雷雨》只能在周二上演B.《茶馆》可能在周二或周四上演
C.周三可能上演《雷雨》或《马蹄声碎》D.四部话剧都有可能在周二上演

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,四边形ABCD为矩形,PB=2,BC=3,PA⊥平面ABCD.
(1)证明:平面PCD⊥平面PAD;
(2)当AB的长为多少时,点B到平面ACD的距离为$\frac{3}{2}$?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设$f(x)=\frac{x}{{\sqrt{1+{x^2}}}}$,数列{an}满足a1=f(1),an+1=f(an)(n∈N*),则a2017=(  )
A.$\frac{1}{{\sqrt{2016}}}$B.$\frac{1}{{\sqrt{2017}}}$C.$\frac{1}{{\sqrt{2018}}}$D.$\frac{1}{{\sqrt{2019}}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下列函数,是偶函数,且周期为π的是(  )
A.y=cos2x-sin2xB.y=sin2x+cos2xC.y=cos2x-sin2xD.y=sin2x+cosx

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知向量$\overrightarrow{a}$=(2sinx,$\sqrt{3}$sinx),$\overrightarrow{b}$=(sinx,2cosx),函数f(x)=2$\overrightarrow{a}$•$\overrightarrow{b}$,若不等式f(x)≤m在[0,$\frac{π}{2}$]上有解,则实数m的最小值为(  )
A.0B.-1C.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.侧棱与底面垂直的三棱柱A1B1C1-ABC的所有棱长均为2,则三棱锥B-AB1C1的体积为$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.一几何体的三视图如图示,则该几何体的体积为30.

查看答案和解析>>

同步练习册答案