精英家教网 > 高中数学 > 题目详情
(2013•湛江一模)已知函数f(x)=ex-1,g(x)=
x
+x
,其中e是自然对数的底,e=2.71828….
(1)证明:函数h(x)=f(x)-g(x)在区间(1,2)上有零点;
(2)求方程f(x)=g(x)根的个数,并说明理由;
(3)若数列{an}(n∈N*)满足a1=a(a>0)(a为常数),an+13=g(an),证明:存在常数M,使得对于任意n∈N*,都有an≤M.
分析:(1)直接利用零点存在定理证明函数h(x)=f(x)-g(x)在区间(1,2)上有零点即可;
(2)通过方程f(x)=g(x)构造函数h(x)=ex-1-
x
-x
,利用函数的导数以及函数的单调性,结合零点存在定理说明方程根的个数;
(3)直接利用数学归纳法的证明步骤,证明存在常数M=max{x0,a},使得对于任意的n∈N*,都有an≤M.
解答:解:(1)证明:由h(x)=f(x)-g(x)=ex-1-
x
-x
,得:
h(1)=e-3<0,h(2)=e2-2-
2
>0,
所以函数h(x)在区间(1,2)上有零点.
(2)由(1)得:h(x)=ex-1-
x
-x

g(x)=
x
+x
知,x∈[0,+∞),而h(0)=0,则x=0为h(x)的一个零点,且h(x)在(1,2)内有零点,
因此h(x)至少有两个零点.
所以h′(x)=ex-
1
2
x-
1
2
-1,记φ(x)=ex-
1
2
x-
1
2
-1,则φ′(x)=ex+
1
4
x-
3
2

当x∈(0,+∞)时,φ'(x)>0,因此φ(x)在(0,+∞)上单调递增,则φ(x)在(0,+∞)内至多只有一个零点.h(x)有且只有两个零点.
所以,方程f(x)=g(x)根的个数为2.
(3)记h(x)的正零点为x0,即ex0-1=x0+
x0

(1)当a<x0时,由a1=a,即a1<x0.而a23=a1+
a1
x0+
x0
=ex0-1,因此a2<x0,由此猜测:an<x0.下面用数学归纳法证明:
①当n=1时,a1<x0显然成立;
②假设当n=k(k≥1)时,有ak<x0成立,则当n=k+1时,由ak+13=ak+
ak
x0+
x0
=ex0-1知,ak+1<x0,因此,当n=k+1时,ak+1<x0成立.
故对任意的n∈N*,an<x0成立.
(2)当a≥x0时,由(1)知,h(x)在(x0,+∞)上单调递增.则h(a)≥h(x0)=0,即a3≥a+
a
.从而a23=a1+
a1
=a+
a
a3
,即a2≤a,由此猜测:an≤a.下面用数学归纳法证明:
①当n=1时,a1≤a显然成立;
②假设当n=k(k≥1)时,有ak≤a成立,则当n=k+1时,由ak+13=ak+
ak
≤a+
a
a3
知,ak+1≤a,因此,当n=k+1时,ak+1≤a成立.
故对任意的n∈N*,an≤a成立.
综上所述,存在常数M=max{x0,a},使得对于任意的n∈N*,都有an≤M.
点评:本题考查函数的零点存在定理的应用,数学归纳法的证明方法以及函数的导数的应用,考查分析问题解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•湛江一模)在△ABC中,∠A=
π
3
,AB=2,且△ABC的面积为
3
2
,则边AC的长为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•湛江一模)如图圆上的劣弧
CBD
所对的弦长CD=
3
,弦AB是线段CD的垂直平分线,AB=2,则线段AC的长度为
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•湛江一模)点P是圆x2+y2+2x-3=0上任意一点,则点P在第一象限的概率为
1
6
-
3
1
6
-
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•湛江一模)下列四个论述:
(1)线性回归方程y=bx+a必过点(
.
x
.
y

(2)已知命题p:“?x∈R,x2≥0“,则命题¬p是“?x0∈R,
x
2
0
<0“
(3)函数f(x)=
x2(x≥1)
x(x<1)
在实数R上是增函数;
(4)函数f(x)=sinx+
4
sinx
的最小值是4
其中,正确的是
(1)(2)(3)
(1)(2)(3)
(把所有正确的序号都填上).

查看答案和解析>>

同步练习册答案