精英家教网 > 高中数学 > 题目详情
已知函数是定义在R上的奇函数。
(1)求实数a的值;
(2)判断f(x)在定义域上的单调性,并用单调性定义证明;
(3)当x∈(0,1]时,t·f(x) ≥2x-2恒成立,求实数t的取值范围。

解:(1)
令x=0,则,∴a=2,
经检验a=2时,f(x)为定义在R上的奇函数。
(2)f(x)是R上的增函数。
证明:任取,且




所以f(x)是R上的增函数。
(3)不等式

,x∈(0,1],则u∈(1,2],
于是,当x∈(0,1]时,恒成立,
即当u∈(1,2]时,恒成立;


所以实数t的取值范围是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数是定义在R上的偶函数,已知x≥0时,f(x)=-x+1,则f(x)的解析式为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数是定义在R上的奇函数,当x>0时,f(x)=x2-x,则f(-3)=(  )

查看答案和解析>>

科目:高中数学 来源:2012-2013学年浙江省绍兴一中高二下学期期中考试理科数学试卷(带解析) 题型:填空题

已知函数是定义在R上的奇函数,且当时不等式成立, 若 ,则的大小关系是    

查看答案和解析>>

科目:高中数学 来源:2014届山东省高一上学期12月月考数学 题型:填空题

已知函数是定义在R上的增函数,且,则m的取值范围是           .

 

查看答案和解析>>

科目:高中数学 来源:2010-2011年湖北省襄阳四校高二第二学期期中考试文数 题型:填空题

 

 已知函数是定义在R上的奇函数,

则不等式  的解集是               .

 

查看答案和解析>>

同步练习册答案