精英家教网 > 高中数学 > 题目详情

已知P为△ABC所在平面外一点,且PA、PB、PC两两垂直,则下列命题:①PA⊥BC;②PB⊥AC;③PC⊥AB;④ AB⊥BC. 其中正确的(    )

                            A.①②③       B.①②④

C.②③④                   D.①②③④

 

【答案】

A

【解析】

试题分析:由PA、PB、PC两两垂直 可得PA⊥平面PBC ; PB⊥平面PAC ; PC⊥平面PAB 所以PA⊥BC;PB⊥AC;PC⊥AB  ①②③正确

△ABC中     

由余弦定理可知△ABC为锐角三角形

考点:本题考查线面垂直的判定和性质定理

点评:基本定理的考查,学生易得分

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知P为△ABC所在平面α外一点,侧面PAB、PAC、PBC与底面ABC所成的二面角都相等,则P点在平面α内的射影一定是△ABC的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知P为△ABC所在平面内一点,且满足
AP
=
1
5
AC
+
2
5
AB
,则△APB的面积与△PAC的面积之比为
1
2
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知P为△ABC所在平面外的一点,PC⊥AB,PC=AB=2,E、F分别为PA和BC的中点
(1)求EF与PC所成的角;
(2)求线段EF的长.

查看答案和解析>>

科目:高中数学 来源:2013届山东省高二12月月考理科数学 题型:选择题

已知P为△ABC所在平面α外一点,侧面PAB、PAC、PBC与底面ABC所成的二面角都相等,则P点在平面α内的射影一定是△ABC的(     )

A.内心           B.外心           C.垂心         D.重心

 

查看答案和解析>>

同步练习册答案