ÒÑÖªÇúÏßC£ºxy=1£¬¹ýCÉÏÒ»µãA1£¨x1£¬y1£©×÷бÂÊk1µÄÖ±Ïߣ¬½»ÇúÏßCÓÚÁíÒ»µãA2£¨x2£¬y2£©£¬ÔÙ¹ýA2£¨x2£¬y2£©×÷бÂÊΪk2µÄÖ±Ïߣ¬½»ÇúÏßCÓÚÁíÒ»µãA3£¨x3£¬y3£©£¬¡­£¬¹ýAn£¨xn£¬yn£©×÷бÂÊΪknµÄÖ±Ïߣ¬½»ÇúÏßCÓÚÁíÒ»µãAn+1£¨xn+1£¬yn+1£©¡­£¬ÆäÖÐx1=1£¬kn=-
xn+1
x
2
n
+4xn
(x¡ÊN*)

£¨1£©Çóxn+1ÓëxnµÄ¹Øϵʽ£»
£¨2£©ÅжÏxnÓë2µÄ´óС¹Øϵ£¬²¢Ö¤Ã÷ÄãµÄ½áÂÛ£»
£¨3£©ÇóÖ¤£º|x1-2|+|x2-2|+¡­+|xn-2|£¼2£®
·ÖÎö£º£¨1£©¹ýAn£¨xn£¬yn£©Ð±ÂÊΪ-
xn+1
x
2
n
+4xn
µÄÖ±ÏßΪy-yn=-
xn+1
x
2
n
+4xn
£¨x-xn£©£¬An+1ÔÚÖ±ÏßÉÏ£¬»¯¼ò¼´¿ÉÇóxn+1ÓëxnµÄ¹Øϵʽ£»
£¨2£©ÀûÓã¨1£©µÄ½áÂÛ£¬·Öµ±nΪÆæÊýʱ£¬ÅжÏxn£¼2£»µ±nΪżÊýʱ£¬ÅжÏxn£¾2£¬È»ºóÍÆÀíÖ¤Ã÷µÄ½áÂÛ£»
£¨3£©ÀûÓÃxn+1=
xn+4
xn+1
=1+
3
xn+1
£¬ÔÙÀûÓ÷ÅËõ·¨£¬ÍƳö|xn-2|¡Ü
1
2n-1
£¬ÔÙÖ¤Ã÷|x1-2|+|x2-2|+¡­+|xn-2|£¼2£®
½â´ð£º½â£º£¨1£©ÓÉÒÑÖª¹ýAn£¨xn£¬yn£©Ð±ÂÊΪ-
xn+1
x
2
n
+4xn
µÄÖ±ÏßΪy-yn=-
xn+1
x
2
n
+4xn
£¨x-xn£©£¬
Ö±Ïß½»ÇúÏßCÓÚÁíÒ»µãAn+1£¨xn+1£¬yn+1£©
ËùÒÔyn+1-yn=-
xn+1
x
2
n
+4xn
£¨xn+1-xn£©£¨2·Ö£©
¼´
1
xn+1
-
1
xn
=-
xn+1
x
2
n
+4xn
£¨xn+1-xn£©£¬xn+1-xn¡Ù0£¬
ËùÒÔxn+1=
xn+4
xn+1
(n¡ÊN*)
£¨4·Ö£©
£¨2£©½â£ºµ±nΪÆæÊýʱ£¬xn£¼2£»µ±nΪżÊýʱ£¬xn£¾2£¨5·Ö£©
ÒòΪxn-2=
xn-1+4
xn-1+1
-2=-
xn-1-2
xn-1+1
£¬£¨6·Ö£©
×¢Òâµ½xn£¾0£¬ËùÒÔxn-2Óëxn-1-2ÒìºÅ
ÓÉÓÚx1=1£¼2£¬ËùÒÔx2£¾2£¬ÒÔ´ËÀàÍÆ£¬
µ±n=2k-1£¨k¡ÊN*£©Ê±£¬xn£¼2£»
µ±n=2k£¨k¡ÊN*£©Ê±£¬xn£¾2£¨8·Ö£©
£¨3£©ÓÉÓÚxn£¾0£¬xn+1=
xn+4
xn+1
=1+
3
xn+1
£¬
ËùÒÔxn¡Ý1£¨n=1£¬2£¬3£¬£©£¨9·Ö£©
ËùÒÔ|xn+1-2|=|
xn-2
xn+1
|=
|xn-2|
|xn+1|
¡Ü
1
2
|xn-2|
£¨10·Ö£©
ËùÒÔ|xn-2|¡Ü
1
2
|xn-1-2|
¡Ü
1
22
|xn-2-2|
¡Ü¡­¡Ü
1
2n-1
|x1-2|=
1
2n-1
£¨12·Ö£©
ËùÒÔ|x1-2|+|x2+2|+¡­+|xn-2|¡Ü1+
1
2
+(
1
2
)
2
+¡­+(
1
2
)
n-1
=2-(
1
2
)n-1£¼2
£¨14·Ö£©
µãÆÀ£º±¾Ì⿼²éÖ±ÏßµÄбÂÊ£¬²»µÈʽµÄÖ¤Ã÷£¬¿¼²é·ÖÎöÎÊÌâ½â¾öÎÊÌâµÄÄÜÁ¦£¬ÊÇÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÇúÏßC£ºxy=1£¬¹ýCÉÏÒ»µãAn£¨xn£¬yn£©×÷һбÂÊΪkn=-
1
xn+2
µÄÖ±Ïß½»ÇúÏßCÓÚÁíÒ»µãAn+1£¨xn+1£¬yn+1£©£¬µãÁÐAn£¨n=1£¬2£¬3£¬¡­£©µÄºá×ø±ê¹¹³ÉÊýÁÐ{xn}£¬ÆäÖÐx1=
11
7
£®
£¨1£©ÇóxnÓëxn+1µÄ¹Øϵʽ£»
£¨2£©ÇóÖ¤£º{
1
xn-2
+
1
3
}ÊǵȱÈÊýÁУ»
£¨3£©ÇóÖ¤£º£¨-1£©x1+£¨-1£©2x2+£¨-1£©3x3+¡­+£¨-1£©nxn£¼1£¨n¡ÊN£¬n¡Ý1£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÇúÏßC£ºxy=1£¬¹ýCÉÏÒ»µãAn£¨xn£¬yn£©×÷һбÂÊkn=-
1
xn+2
µÄÖ±Ïß½»ÇúÏßCÓÚÁíÒ»µãAn+1£¨xn+1£¬yn+1£©£®
£¨1£©ÇóxnÓëxn+1Ö®¼äµÄ¹Øϵʽ£»
£¨2£©Èôx1=
11
7
£¬ÇóÖ¤£ºÊýÁÐ
1
xn-2
+
1
3
ÊǵȱÈÊýÁУ»
£¨3£©ÇóÖ¤£º£¨-1£©x1+£¨-1£©2x2+£¨-1£©3x3+¡­£¨-1£©nxn£¼1£¨n¡ÊN*£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÇúÏßC£ºxy=1
£¨1£©½«ÇúÏßCÈÆ×ø±êÔ­µãÄæʱÕëÐýת45¡ãºó£¬ÇóµÃµ½µÄÇúÏßC¡äµÄ·½³Ì£»
£¨2£©ÇóÇúÏßCµÄ½¹µã×ø±êºÍ½¥½üÏß·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2009•±õÖÝһģ£©ÒÑÖªÇúÏßC£ºxy=1£¬¹ýCÉÏÒ»µãAn£¨xn£¬yn£©×÷һбÂÊΪkn=
1
xn+2
µÄÖ±Ïß½»ÇúÏßCÓÚÁíÒ»µãAn+1£¨xn+1£¬yn+1£©£¬µãÁÐ{An}µÄºá×ø±ê¹¹³ÉÊýÁÐ{xn}£¬ÆäÖÐx1=
11
7
£®
£¨I£©ÇóxnÓëxn+1µÄ¹Øϵʽ£»
£¨II£©Áîbn=
1
xn-2
+
1
3
£¬ÇóÖ¤£ºÊýÁÐ{bn}ÊǵȱÈÊýÁУ»
£¨III£©Èôcn=3n-¦Ëbn£¨¦ËΪ·ÇÁãÕûÊý£¬n¡ÊN*£©£¬ÊÔÈ·¶¨¦ËµÄÖµ£¬Ê¹µÃ¶ÔÈÎÒân¡ÊN*£¬¶¼ÓÐcn+1£¾cn³ÉÁ¢£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸