精英家教网 > 高中数学 > 题目详情
7.在等差数列{an}中,a5+a6=35,则S10=175.

分析 根据等差数列的性质得:a5+a6=a1+a10=35,再由等差数列的前n项和公式求出S10的值.

解答 解:根据等差数列的性质得:a5+a6=a1+a10=35,
∴S10=$\frac{10({a}_{1}+{a}_{10})}{2}$=5×35=175,
故答案为:175.

点评 本题考查等差数列的性质、前n项和公式的合理运用,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.设f0(x)=cosx,f1(x)=f0′(x),f2(x)=f1′(x),…,fn+1(x)=fn′(x)(n∈N),则f2015(x)=(  )
A.sinxB.-sinxC.cosxD.-cosx

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.一船向正北方向航行,看见它的正西方向有相距10海里的两个灯塔恰好与它在一条直线上.船继续航行半小时后,看见这两个灯塔恰好与它在一条直线上.船继续航行半个小时后,看见这两个灯塔中,一灯塔在船的南偏西60°方向上,另一灯塔在船的南偏西75°方向上,则这艘船的速度是每小时(  )
A.5$\sqrt{2}$海里B.5 海里C.10$\sqrt{2}$海里D.10海里

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知不等式|x+a|+|x-3|≤|x-4|的解集包含[2,3],则a的取值范围为(  )
A.[-3,-2]B.[-2,0]C.[-3,0]D.[-2,1]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设关于x的不等式x2-x<2n(n+1)x,(n∈N*)的解集中整数的个数为$\frac{1}{a_n}$,数列{an}的前n项和为Sn,则S100的值为$\frac{50}{101}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.用坐标法证明:等腰三角形ABC底边上一点到两腰的距离和等于一腰上的高.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知正项等比数列{an}满足:a7=a6+2a5,若存在两项am、an,使得aman=16a12,则$\frac{1}{m}$+$\frac{9}{n}$的最小值为(  )
A.$\frac{3}{2}$B.$\frac{8}{3}$C.$\frac{11}{4}$D.不存在

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知tan$\frac{α}{2}$=2,求值:
(1)tan(α+$\frac{π}{4}$);
(2)$\frac{6sinα+cosα}{3sinα-2cosα}$;
(3)sin2α.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数y=3cos($\frac{2}{5}$x-$\frac{π}{6}$)的最小正周期是(  )
A.$\frac{2\;π}{5}$B.$\frac{5\;π}{2}$C.D.

查看答案和解析>>

同步练习册答案