精英家教网 > 高中数学 > 题目详情
如图,已知多面体ABCDE中,AB⊥平面ACD,DE⊥平面ACD,AC=AD=CD=DE=2,AB=1,F为CE的中点.
( I)求证:求证AF⊥CD;
(II)求多面体ABCDE的体积.
分析:( I)取CD的中点O,连接AO、OF,则OF∥DE,利用线面垂直的判断性质得到DE⊥CD,OF⊥CD,利用线面垂直的判断得到CD⊥平面AOF,AF?平面AOF得到AF⊥CD.
(II)取AD中点G,根据AC=AD=CD=2,可得CG⊥AD,CG=
3
,利用平面ABED⊥平面ACD,可知CG⊥平面ABED,从而可求多面体ABCDE的体积.
解答:解:( I)取CD的中点O,连接AO、OF,则OF∥DE,
∵AC=AD,
∴AO⊥CD
∵DE⊥平面ACD
∴DE⊥CD
∴OF⊥CD,
又AO∩OF=O
∴CD⊥平面AOF
∵AF?平面AOF
∴AF⊥CD.
(II)取AD中点G,
∵AC=AD=CD=2,
∴CG⊥AD,CG=
3

∵AB⊥平面ACD,DE⊥平面ACD
∴平面ABED⊥平面ACD
∴CG⊥平面ABED
∵DE=2,AB=1
VABCDE=
1
3
SABED•CG=
1
3
1
2
(AB+DE)•AD•
3
=
3
点评:本题以多面体为载体,考查线面垂直,考查线线垂直,考查几何体的体积,解答的关键是正确运用线面垂直的判定定理.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,已知多面体ABCDEF中,AB⊥平面ACDF,DE⊥平面ACDF,△ACD是正三角形,且AD=DE=2,AB=AF=1,DF=
3

(Ⅰ)求证:DF⊥平面CDE;
(Ⅱ)求多面体ABCDEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知多面体ABCDE中,DE⊥平面DBC,DE∥AB,BD=CD=BC=AB=2,F为BC的中点.
(Ⅰ)求证:DF⊥平面ABC;
(Ⅱ)求点D到平面EBC的距离的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知多面体ABCDE中,AB⊥平面ACD,DE⊥平面ACD,三角形ACD是正三角形,且AD=DE=2,AB=1.
(1)求直线AE与平面CDE所成角的大小(用反三角函数值表示);
(2)求多面体ABCDE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知多面体ABCDE中,AB⊥平面ACD,DE⊥平面ACD,AC=AD=CD=DE=2,AB=1,F为CD的中点.
(Ⅰ)求证:AF⊥平面CDE;
(Ⅱ)求三棱锥A-BCE的体积.

查看答案和解析>>

同步练习册答案