精英家教网 > 高中数学 > 题目详情
18.设{an}是公比为q(q≠1),首项为a的等比数列,Sn是其前n项和,则点(Sn,Sn+1)(  )
A.一定在直线y=qx-a上B.一定在直线y=ax+q上
C.一定在直线y=ax-q上D.一定在直线y=qx+a上

分析 由于Sn+1-qSn=$\frac{a(1-{q}^{n+1})}{1-q}$-q$\frac{a(1-{q}^{n})}{1-q}$=a,即可得出.

解答 解:∵Sn+1-qSn=$\frac{a(1-{q}^{n+1})}{1-q}$-q$\frac{a(1-{q}^{n})}{1-q}$=a,
∴Sn+1=qSn+a,
∴点(Sn,Sn+1)一定在直线y=qx+a上.
故选:D.

点评 本题考查了等比数列的前n项和公式、直线的方程,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.直线l经过原点,且经过两条直线2x+3y+8=0,x-y-1=0的交点,则直线l的方程为2x-y=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知$α∈R,α≠\frac{π}{2}+kπ({k∈Z})$,设直线l:y=xtanα+m,其中m≠0,给出下列结论:
①直线l的方向向量与向量$\overrightarrow a=({cosα,sinα})$共线;
②若$0<α<\frac{π}{4}$,则直线l与直线y=x的夹角为$\frac{π}{4}-α$;
③直线l与直线xsinα-ycosα+n=0(n≠m)一定平行;
写出所有真命题的序号①②.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若曲线$\left\{\begin{array}{l}{x=2pt}\\{y=2p{t}^{2}}\end{array}\right.$,(t为参数)上异于原点的不同两点M1,M2所对应的参数分别是t1、t2(且t1≠t2),则弦M1M2所在直线的斜率是(  )
A.t1+t2B.t1-t2C.$\frac{1}{{t}_{1+}{t}_{2}}$D.$\frac{1}{{t}_{1-}{t}_{2}}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知集合A={x|x≤a},B={x|-2≤x<1},若A∪B=A,则实数a的取值范围是a≥1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设l,m是不同的直线,α,β,γ是不同的平面,则下列命题正确的是②.
①若l⊥m,m⊥α,则l⊥α或 l∥α          
②若l⊥γ,α⊥γ,则l∥α或 l?α
③若l∥α,m∥α,则l∥m或 l与m相交    
④若l∥α,α⊥β,则l⊥β或 l?β

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=2ax+$\frac{1}{x}$(a∈R).
(1)当$a=\frac{1}{2}$时,试判断f(x)在(0,1]上的单调性并用定义证明你的结论;
(2)对于任意的x∈(0,1],使得f(x)≥6恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知圆x2+y2+8x-4y=0与圆x2+y2=20关于直线y=kx+b对称,
(1)求k、b的值;
(2)若这时两圆的交点为A、B,求∠AOB的度数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.一个圆经过点A(0,2)与B(-2,1),且圆心在直线x-3y-10=0上,求此圆的方程.

查看答案和解析>>

同步练习册答案