精英家教网 > 高中数学 > 题目详情
(本小题满分12分)已知三棱锥P—ABC中,PC⊥底面ABC,,,二面角P-AB-C为,D、F分别为AC、PC的中点,DE⊥AP于E.
(Ⅰ)求证:AP⊥平面BDE;                
(Ⅱ)求平面BEF与平面BAC所成的锐二面角的余弦值.
(1)略(2)
(Ⅰ)证明PC⊥底面ABC,又AB=BC,D为AC中点平面ACP平面ACP
,又平面BDE…………4分
(Ⅱ)为PB在平面ABC上的射影为二面角P-AB-C的平面角
作EHAC于H, 则………6分
以D为原点DB,DC所在直线分别为X轴Y轴,平面ABC的垂线为Z轴建立空间直角坐标系D-xyz可得.
设平面BEF的法向量为
可取…………..10分
取平面ABC的法向量平面BEF与平面BAC所成的锐二面角的余弦值为…………12分
解法(二)简答
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,在直三棱柱中,是棱上的动点,中点,
(Ⅰ)求证:平面
(Ⅱ)若二面角的大小是,求的长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图6,已知正三棱柱ABC—A1B1C1中,D是BC的中点,AA1=AB=1。
(1)求证:平面AB1D⊥平面B1BCC1
(2)求证:A1C//平面AB1D;
(3)求二面角B—AB1—D的正切值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本大题满分12分)如图,P是边长为1的正六边形ABCDEF所在平面外一点,,P在平面ABC内的射影为BF的中点O。
(Ⅰ)证明
(Ⅱ)求面与面所成二面角的大小。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图,四棱锥中,侧面PDC是边长为2的正三角形,且与底面垂直,底面ABCD是面积为的菱形,为锐角,M为PB的中点。
(1)求证
(2)求二面角的大小
(3)求P到平面的距离

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,在四棱锥P—ABCD中,底面ABCD是矩形,已知AB = 3,AD = 2,PA = 2,
(1)   证明:AD⊥平面PAB
(2)   求异面直线PCAD所成的角的大小;
(3)   求二面角P—BD—A的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图:在四棱锥中,底面为菱形,与底面垂直,
为棱的中点,的中点,的交点,

(1)求证:
(2)求锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题











(1)证明:
(2)若上的动点,与平面所成最大角的正切值为,求锐二面角的余弦值;
(3)在(2)的条件下,设,求点到平面的距离。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在平面内,三角形的面积为S,周长为C,则它的内切圆的半径.在空间中,三棱锥的体积为V,表面积为S,利用类比推理的方法,可得三棱锥的内切球(球面与三棱锥的各个面均相切)的半径R=______________________。

查看答案和解析>>

同步练习册答案