精英家教网 > 高中数学 > 题目详情
16.在数列{an}中,已知a1=2,an+1=3an+2n-1.
(1)求证:数列{an+n}为等比数列;
(2)记bn=an+(1-λ)n,且数列{bn}的前n项和为Tn,若T3为数列{Tn}中的最小项,求λ的取值范围.

分析 (1)由an+1=3an+2n-1,整理得:an+1+n+1=3(an+n).由an+n>0,$\frac{{{a_{n+1}}+n+1}}{{{a_n}+n}}=3$,可知{an+n}是以3为首项,公比为3的等比数列;
(2)由(1)求得数列{bn}通项公式及前n项和为Tn,由T3为数列{Tn}中的最小项,则对?n∈N*有$\frac{3}{2}({3^n}-1)-\frac{n(n+1)}{2}λ≥39-6λ$恒成立,分类分别求得当n=1时和当n=2λ的取值范围,
当n≥4时,$f(n)=\frac{{{3^{n+1}}-81}}{{n{\;}^2+n-12}}$,利用做差法,根据函数的单调性,即可求得λ的取值范围.

解答 解:(1)证明:∵an+1=3an+2n-1,
∴an+1+n+1=3(an+n).
又a1=2,
∴an>0,an+n>0,
故$\frac{{{a_{n+1}}+n+1}}{{{a_n}+n}}=3$,
∴{an+n}是以3为首项,公比为3的等比数列    …(4分)
(2)由(1)知道${a_n}+n={3^n}$,bn=an+(1-λ)n,
∴${b_n}={3^n}-nλ$.…(6分)
∴${T_n}={3^1}+{3^2}+…+{3^n}-(1+2+3+…+n)λ=\frac{3}{2}({3^n}-1)-\frac{n(n+1)}{2}λ$.…(8分)
若T3为数列{Tn}中的最小项,则对?n∈N*有$\frac{3}{2}({3^n}-1)-\frac{n(n+1)}{2}λ≥39-6λ$恒成立,
即3n+1-81≥(n2+n-12)λ对?n∈N*恒成立           …(10分)
1°当n=1时,有${T_1}≥{T_3}⇒λ≥\frac{36}{5}$;
2°当n=2时,有T2≥T3⇒λ≥9;                       …(12分)
3°当n≥4时,n2+n-12=(n+4)(n-3)>0恒成立,
∴$λ≤\frac{{{3^{n+1}}-81}}{{n{\;}^2+n-12}}$对?n≥4恒成立.
令$f(n)=\frac{{{3^{n+1}}-81}}{{n{\;}^2+n-12}}$,则$f(n+1)-f(n)=\frac{{{3^{n+1}}(2{n^2}-26)+162(n+1)}}{{({n^2}+3n-10)({n^2}+n-12)}}>0$对?n≥4恒成立,
∴$f(n)=\frac{{{3^{n+1}}-81}}{{n{\;}^2+n-12}}$在n≥4时为单调递增数列.
∴λ≤f(4),即$λ≤\frac{81}{4}$.…(15分)
综上,$9≤λ≤\frac{81}{4}$.…(16分)

点评 本题考查等差数列和等比数列的性质,考查数列的前n项和公式,数列与不等式结合,利用函数的单调性,求最值,考查计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=$\frac{1}{4}$x3-$\frac{3}{4}$x-$\frac{7}{2}$.x∈[0,2].
(I)求f(x)的单调区间与最值;
(II)设a>0,函数g(x)=x3-3a2x-2a,x∈[0,1],若对任意的x1∈[0,2]总存在x0∈[0,1]使得g(x0)=f(x1)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设函数f(x)=(x2-2ax)lnx+bx2,a,b∈R.
(1)当a=1,b=-1时,设g(x)=(x-1)2lnx+x,求证:对任意的x>1,g(x)-f(x)>x2+x+e-ex
(2)当b=2时,若对任意x∈[1,+∞),不等式2f(x)>3x2+a恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.命题“若a=0,则ab=0”的否命题是(  )
A.若ab=0,则a=0B.若ab=0,则a≠0C.若a≠0,则ab≠0D.若ab≠0,则a≠0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设定义在(0,+∞)上的单调函数f(x),对任意的x∈(0,+∞)都有f[f(x)-log2x]=3.若方程f(x)+f′(x)=a有两个不同的实数根,则实数a的取值范围是(  )
A.(1,+∞)B.(2+$\frac{1}{ln2}$,+∞)C.(3-$\frac{1}{2ln2}$,+∞)D.(3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知a,b>0,且a≠1,b≠1,若logab>1,则(  )
A.(a-1)(b-1)<0B.(a-1)(b-a)>0C.(b-1)(b-a)<0D.(a-1)(a-b)>0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.某市要修建一个扇形绿化区域,其周长定为40米,求它的半径和圆心角取什么值时,才能使扇形绿化区域的面积最大?最大面积是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)是定义在R上的奇函数,且在区间[0,+∞)上为减函数,若f(1-a)+f(1-2a)<0求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在△ABC中,B=2A,∠ACB的平分线CD把△ABC的面积分成3:2两部分,则cosA等于(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{3}{4}$D.0

查看答案和解析>>

同步练习册答案