精英家教网 > 高中数学 > 题目详情

【题目】函数f(x)=Asin(ωx+φ)(ω>0, )的部分图象如图所示,将函数f(x)的图象向右平移 个单位后得到函数g(x)的图象,若函数g(x)在区间 )上的值域为[﹣1,2],则θ=

【答案】
【解析】解:根据函数f(x)=Asin(ωx+φ)(ω>0, )的部分图象,

可得A=﹣2, = = ,∴ω=2.

再根据五点法作图可得2 +φ=π,∴φ= ,f(x)=﹣2sin(2x+ ).

将函数f(x)的图象向右平移 个单位后得到函数g(x)=﹣2sin(2x﹣ + )=﹣2sin(2x﹣ )的图象,

对于函数y=g(x),当x∈ ),2x﹣ ∈[﹣π,2θ﹣ ],

由于g(x)的值域为[﹣1,2],故﹣2sin(2x﹣ )的最小值为﹣1,此时,2sin(2θ﹣ )=

则θ=

所以答案是:

【考点精析】根据题目的已知条件,利用函数y=Asin(ωx+φ)的图象变换的相关知识可以得到问题的答案,需要掌握图象上所有点向左(右)平移个单位长度,得到函数的图象;再将函数的图象上所有点的横坐标伸长(缩短)到原来的倍(纵坐标不变),得到函数的图象;再将函数的图象上所有点的纵坐标伸长(缩短)到原来的倍(横坐标不变),得到函数的图象.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在四棱锥PABCD中,DA⊥平面PABDCABDADC=2,ABAP=4,∠PAB=120°,MPB中点.

(Ⅰ)求证:CM∥平面PAD

(Ⅱ)求二面角MACB的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的中心在原点,离心率为 ,右焦点到直线 的距离为2.
(1)求椭圆 的方程;
(2)椭圆下顶点为 ,直线 )与椭圆相交于不同的两点 ,当 时,求 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=sin(ωx+φ)(其中|φ|< )的图象如图所示,为了得到y=sinωx的图象,只需把y=f(x)的图象上所有点(
A.向左平移 个单位长度
B.向右平移 个单位长度
C.向左平移 个单位长度
D.向右平移 个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在△ABC中,角A,B,C的对边分别为a,b,c,且 + =
(1)求b的值;
(2)若cosB+ sinB=2,求a+c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=e2x , g(x)=kx+1(k∈R). (Ⅰ)若直线y=g(x)和函数y=f(x)的图象相切,求k的值;
(Ⅱ)当k>0时,若存在正实数m,使对任意x∈(0,m),都有|f(x)﹣g(x)|>2x恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在等差数列{an}中,a2+a7=﹣23,a3+a8=﹣29
(1)求数列{an}的通项公式;
(2)设数列{an+bn}是首项为1,公比为2的等比数列,求{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,斜三棱柱ABC﹣A1B1C1中,侧面AA1B1B为菱形,底面△ABC是等腰直角三角形,∠BAC=90°,A1B⊥B1C.
(1)求证:直线AC⊥直线BB1
(2)若直线BB1与底面ABC成的角为60°,求二面角A﹣BB1﹣C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A、B、C所对的边分别为a,b,c,满足(2a﹣c)cosB=bcosC.
(1)求B的大小;
(2)如图,AB=AC,在直线AC的右侧取点D,使得AD=2CD=4.当角D为何值时,四边形ABCD面积最大.

查看答案和解析>>

同步练习册答案