精英家教网 > 高中数学 > 题目详情

【题目】某兴趣小组欲研究某地区昼夜温差大小与患感冒就诊人数之间的关系,他们分别到气象局与某医院抄录了1到5月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:

日期

1月10日

2月10日

3月10日

4月10日

5月10日

昼夜温差

8

10

13

12

9

就诊人数(个)

18

25

28

26

17

该兴趣小组确定的研究方案是:先从这5组数据中选取一组,用剩下的4组数据求线性回归方程,再用选取的一组数据进行检验.

(1)若选取的是1月的一组数据,请根据2至5月份的数据.求出关于的线性回归方程

(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差不超过2,则认为得到的线性回归方程是理想的,试判断该小组所得的线性回归方程是否理想?如果不理想,请说明理由,如果理想,试预测昼夜温差为时,因感冒而就诊的人数约为多少?

参考公式:, .

【答案】(1);(2)理想,13人.

【解析】

(1)由题意计算平均数和回归系数,写出线性回归方程;

(2)利用回归方程计算的值,判断线性回归方程是理想的;再计算的值,即可预测昼夜温差为时因感冒而就诊的人数.

解:(1)由题意计算

由公式求得:

关于的线性回归方程为

(2)当时,

该小组所得线性回归方程是理想的;

时,

即预测昼夜温差为时,因感冒而就诊的人数约为13人.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线与直线交于两点,

(Ⅰ)当时,求在点处的切线方程;

(Ⅱ)若轴上存在点,当变动时,总有,试求出坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学生对其亲属30人的饮食习惯进行了一次调查,并用下图所示的茎叶图表示30人的饮食指数.(说明:图中饮食指数低于70的人,饮食以蔬菜为主;饮食指数高于70的人,饮食以肉类为主)

(1)根据以上数据完成下面的2×2列联表:

主食 蔬菜

主食 肉类

总计

50岁以下

50岁以上

总计

(2)能否在犯错误的概率不超过0.010的前提下认为“其亲属的饮食习惯与年龄有关”?并写出简要分析.

附参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)是定义在(0,+∞)上的单调函数,且对任意的x∈(0,+∞),都有f[f(x)﹣log2x]=3,则方程f(x)﹣f′(x)=2的解所在的区间是(
A.(0,
B.( ,1)
C.(1,2)
D.(2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆与直线,且直线有唯一的一个点,使得过点作圆的两条切线互相垂直,则_____;设是直线上的一条线段,若对于圆上的任意一点,则的最小值_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 .

1)若的充分不必要条件,求实数的取值范围;

(2)若为真命题,“”为假命题,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=( ax , a为常数,且函数的图象过点(﹣1,2).
(1)求a的值;
(2)若g(x)=4x﹣2,且g(x)=f(x),求满足条件的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四面体ABCD中,△ABC是正三角形,△ACD是直角三角形,∠ABD=∠CBD,AB=BD.
(Ⅰ)证明:平面ACD⊥平面ABC;
(Ⅱ)过AC的平面交BD于点E,若平面AEC把四面体ABCD分成体积相等的两部分,求二面角D﹣AE﹣C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD中,底面ABCD是边长为2的菱形,∠ABC=60°,PA⊥PB,PC=2.
(1)求证:平面PAB⊥平面ABCD;
(2)若PA=PB,求二面角A﹣PC﹣D的余弦值.

查看答案和解析>>

同步练习册答案