精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系中,曲线与直线交于两点,

(Ⅰ)当时,求在点处的切线方程;

(Ⅱ)若轴上存在点,当变动时,总有,试求出坐标.

【答案】(Ⅰ)(Ⅱ)

【解析】

Ⅰ)过的切线斜率为切线方程为:,与联立方程得,,,同理求N点处的切线方程;Ⅱ)当时,,联立直线和抛物线再结合韦达定理代入上式,可得到结果.

(Ⅰ)当时,联立方程

不妨取,设过的切线斜率为

则其切线方程为:,与联立方程得,

分所以曲线的切线方程为:

同理,曲线的切线方程为:.

综上在点处的切线方程分别为

(Ⅱ)联立方程,消去整理得

斜率分别为,则由根与系数关系得

由题意,当时,

代入整理得恒成立,所以

所以轴上存在点,当变动时,总有.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在几何体ABCDEF中,四边形ABCD是菱形,BE⊥平面ABCD,DF∥BE,且DF=2BE=2,EF=3.
(1)证明:平面ACF⊥平面BEFD
(2)若二面角A﹣EF﹣C是二面角,求直线AE与平面ABCD所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ,点A、B是函数f(x)图象上不同两点,则∠AOB(O为坐标原点)的取值范围是(
A.(0,
B.(0, ]
C.(0,
D.(0, ]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,直线C1:x=﹣2,圆C2:(x﹣1)2+(y﹣2)2=1,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.
(Ⅰ)求C1 , C2的极坐标方程;
(Ⅱ)若直线C3的极坐标方程为θ= (ρ∈R),设C2与C3的交点为M,N,求△C2MN的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn , 对任意n∈N+ , Sn=(﹣1)nan+ +n﹣3且(t﹣an+1)(t﹣an)<0恒成立,则实数t的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】据环保部门测定,某处的污染指数与附近污染源的强度成正比,与到污染源距离的平方成反比,比例常数为.现已知相距两家化工厂(污染源)的污染强度分别为,它们连线上任意一点处(异于两点)的污染指数等于两化工厂对该处的污染指数之和.设

(1)试将表示为的函数;

(2)若,且时,取得最小值,试求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)当 取得极值的值

(Ⅱ)当函数有两个极值点总有 成立的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆锥曲线C经过定点P(3,),它的一个焦点为F(1,0),对应于该焦点的准线为x=-1,斜率为2的直线交圆锥曲线CA、B两点,且 AB =,求圆锥曲线C和直线的方程。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某兴趣小组欲研究某地区昼夜温差大小与患感冒就诊人数之间的关系,他们分别到气象局与某医院抄录了1到5月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:

日期

1月10日

2月10日

3月10日

4月10日

5月10日

昼夜温差

8

10

13

12

9

就诊人数(个)

18

25

28

26

17

该兴趣小组确定的研究方案是:先从这5组数据中选取一组,用剩下的4组数据求线性回归方程,再用选取的一组数据进行检验.

(1)若选取的是1月的一组数据,请根据2至5月份的数据.求出关于的线性回归方程

(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差不超过2,则认为得到的线性回归方程是理想的,试判断该小组所得的线性回归方程是否理想?如果不理想,请说明理由,如果理想,试预测昼夜温差为时,因感冒而就诊的人数约为多少?

参考公式:, .

查看答案和解析>>

同步练习册答案