精英家教网 > 高中数学 > 题目详情
已知函数f(x)=(m,n∈R)在x=1处取到极值2.
(1)求f(x)的解析式;
(2)设函数g(x)=ax-lnx.若对任意的x1∈[,2],总存在唯一的x2∈[,e](e为自然对数的底),使得g(x2)=f(x1),求实数a的取值范围.
【答案】分析:(1)求导函数,利用f(x)在x=1处取到极值2,可得f′(1)=0,f(1)=2,由此可求f(x)的解析式;
(2)确定f(x)在上单调递增,在(1,2)上单调递减,从而可得f(x)的值域;依题意,记,从而可得,再分类讨论,确定g(x)在M上单调性,即可求a取值范围.
解答:解:(1)…(2分)
∵f(x)在x=1处取到极值2,∴f′(1)=0,f(1)=2
,解得m=4,n=1,
…(5分)
(2)由(1)知,故f(x)在上单调递增,在(1,2)上单调递减,
,故f(x)的值域为…(7分)
依题意,记
∵x∈M

(ⅰ)当时,g'(x)≤0,g(x)在M上单调递减,
依题意由,得,…(8分)
(ⅱ)当时,e>时,g′(x)<0,当时,g′(x)>0
依题意得:,解得,…(10分)
(ⅲ)当a>e2时,,此时g′(x)>0,g(x)在M上单调递增,依题意得,即,此不等式组无解 …(11分).
综上,所求a取值范围为…(14分)
点评:本题考查导数知识的运用,考查函数的单调性与极值,考查分类讨论的数学思想,考查学生分析解决问题的能力,有一定的难度.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函数f(x)的最小正周期;
(2)若函数y=f(2x+
π
4
)
的图象关于直线x=
π
6
对称,求φ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为定义在R上的奇函数,且当x>0时,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,时f(x)的表达式;
(2)若关于x的方程f(x)-a=o有解,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aInx-ax,(a∈R)
(1)求f(x)的单调递增区间;(文科可参考公式:(Inx)=
1
x

(2)若f′(2)=1,记函数g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在区间(1,3)上总不单调,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
1
f(n)
}
的前n项和为Sn,则S2010的值为(  )
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在区间(-1,1)上的奇函数,且对于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案