(本小题满分14分)已知椭圆
,它的离心率为
,直线
与以原点为圆心,以椭圆
的短半轴长为半径的圆相切.⑴求椭圆
的方程;⑵设椭圆
的左焦点为
,左准线为
,动直线
垂直于直线
,垂足为点
,线段
的垂直平分线交
于点
,求动点
的轨迹
的方程;⑶将曲线
向右平移2个单位得到曲线
,设曲线
的准线为
,焦点为
,过
作直线
交曲线
于
两点,过点
作平行于曲线
的对称轴的直线
,若
,试证明三点
(
为坐标原点)在同一条直线上.
(Ⅰ)
(Ⅱ)
三点共线
(Ⅰ)由题意可得
, (2分)
由
,得
,∴
, (4分)
∴椭圆
的方程为
.
(4分)
(Ⅱ)由(Ⅰ)可得椭圆
的左焦点为
,左准线为
,
连结
,则
,设
,则
,
∴
,(6分)化简得
的方程为
.(8分)
(Ⅲ)将曲线
向右平移2个单位,得曲线
的方程为:
,其焦点为
,
准线为
,对称轴为
轴.
(10分)
设直线
的方程为
,代入y2=4x,得y2-4ty-4=0.
由题意,可设
(
),
(
),则y1y2=-4,
且有
(12分)∴
,
,
得
.∴
三点共线. (14分)
评析:证明三点共线的方法很多,这里运用向量共线定理来证,体现了平面向量与解析几何知识的交汇和平面向量知识在解析几何中的应用.近几年的高考突出了在知识网络的交汇点处设计命题的要求,平面向量与解析几何知识的综合考查成为一个不衰的热点,复习中要引起重视.
科目:高中数学 来源: 题型:
| 3 |
| π |
| 4 |
| π |
| 4 |
| π |
| 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分14分)设椭圆C1的方程为
(a>b>0),曲线C2的方程为y=
,且曲线C1与C2在第一象限内只有一个公共点P。(1)试用a表示点P的坐标;(2)设A、B是椭圆C1的两个焦点,当a变化时,求△ABP的面积函数S(a)的值域;(3)记min{y1,y2,……,yn}为y1,y2,……,yn中最小的一个。设g(a)是以椭圆C1的半焦距为边长的正方形的面积,试求函数f(a)=min{g(a), S(a)}的表达式。
查看答案和解析>>
科目:高中数学 来源:2011年江西省抚州市教研室高二上学期期末数学理卷(A) 题型:解答题
(本小题满分14分)
已知
=2,点(
)在函数
的图像上,其中
=
.
(1)证明:数列
}是等比数列;
(2)设
,求
及数列{
}的通项公式;
(3)记
,求数列{
}的前n项和
,并证明
.
查看答案和解析>>
科目:高中数学 来源:2015届山东省威海市高一上学期期末考试数学试卷(解析版) 题型:解答题
(本小题满分14分)
某网店对一应季商品过去20天的销售价格及销售量进行了监测统计发现,第
天(
)的销售价格(单位:元)为
,第
天的销售量为
,已知该商品成本为每件25元.
(Ⅰ)写出销售额
关于第
天的函数关系式;
(Ⅱ)求该商品第7天的利润;
(Ⅲ)该商品第几天的利润最大?并求出最大利润.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年广东省高三下学期第一次月考文科数学试卷(解析版) 题型:解答题
(本小题满分14分)已知
的图像在点
处的切线与直线
平行.
⑴ 求
,
满足的关系式;
⑵ 若
上恒成立,求
的取值范围;
⑶ 证明:
(
)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com