精英家教网 > 高中数学 > 题目详情
在△ABC中,A,B,C的对边分别是a,b,c,其中a=
5
,b=
3
,sinB=
2
2
,则角A的取值一定属于范围(  )
A、(
π
4
π
2
B、(
π
2
4
C、(0,
π
4
)∪(
4
,π)
D、(
π
4
π
2
)∪(
π
2
4
考点:正弦定理
专题:解三角形
分析:利用正弦定理列出关系式,把sinB,a,b的值代入求出sinA的值,利用正弦函数的性质确定出A的范围即可.
解答: 解:∵△ABC中,a=
5
,b=
3
,sinB=
2
2

∴由正弦定理
a
sinA
=
b
sinB
得:sinA=
asinB
b
=
5
×
2
2
3
=
30
6
2
2

则A的范围为(
π
4
π
2
)∪(
π
2
4
),
故选:D.
点评:此题考查了正弦定理,以及正弦函数的性质,熟练掌握正弦定理是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,且Sn=n2+1,则a2014
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若y=
x2-6x+25
+
x2-4x+13
,则y的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

动点P到A(0,2)的距离比它到x轴的距离大2,则动点P的轨迹方程是(  )
A、y2=8x
B、y2=8x或y=0(x<0)
C、x2=8x
D、x2=8x或x=0(y<0)

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=ln
1+x
1-x
+sinx,则关于a的不等式f(a-2)+f(2a-2)>0的解集是(  )
A、(-∞,
4
3
B、(
1
2
4
3
C、(
4
3
3
2
D、(
4
3
,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

lg3+lg6+lg5-lg9=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(-
5
3
)2
+(
27
64
 -
1
3
0+log 
1
2
2=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若直线的方程为(3a-1)x+(2-a)y-1=0.
(1)求证:无论实数a为何值时,直线总经过第一象限;
(2)为使直线不经过第二象限,求实数a在取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知圆柱的上、下底面圆心分别为P、Q,AA1与CC1是圆柱的母线,正方形ABCD内接于下底面圆Q,AB=kAA1=2,连接PA、PB、PC.
(Ⅰ)当k=
2
时,求直线PA与平面PBC所成角的正弦值;
(Ⅱ)当k为何值时,Q点在平面PBC内的射影恰好是△PBC的重心.

查看答案和解析>>

同步练习册答案