精英家教网 > 高中数学 > 题目详情
9.已知定圆M:(x+$\sqrt{3}$)2+y2=16,动圆N过点F($\sqrt{3}$,0)且与圆M相切,记圆心N的轨迹为C直线l过点E(-1,0)且与C于A,B
(Ⅰ)求轨迹C方程;
(Ⅱ)△AOB是否存在最大值,若存在,求出△AOB的最大值;若不存在,说明理由.

分析 (Ⅰ)由椭圆定义可知,点P的轨迹C是以N,F为焦点,长半轴长为2的椭圆,由此能求出曲线C的方程.
(Ⅱ)存在△AOB面积的最大值.由直线l过点E(-1,0),设直线l的方程为 x=my-1,联立椭圆方程,整理得(m2+4)y2-2my-3=0.由△=(2m)2+12(m2+4)>0.设A(x1,y1),B(x2,y2).解得y1=$\frac{m+2\sqrt{{m}^{2}+3}}{{m}^{2}+4}$,y2=$\frac{m-2\sqrt{{m}^{2}+3}}{{m}^{2}+4}$.再换元,结合函数的单调性,由此能求出S△AOB的最大值.

解答 解:( I)易知点F($\sqrt{3}$,0)在圆M:(x+$\sqrt{3}$)2+y2=16内,所以圆N内切于圆M,又圆M的半径为4,所以|NM|+|NF|=4>2$\sqrt{3}$=|FM|,所以点N的轨迹C为椭圆,且2a=4,c=$\sqrt{3}$,所以b=1,
所以轨迹C的方程为$\frac{{x}^{2}}{4}+{y}^{2}$=1         (4分)
(Ⅱ)存在△AOB面积的最大值.…(6分)
因为直线l过点E(-1,0),设直线l的方程为 x=my-1或y=0(舍).
联立椭圆方程,整理得 (m2+4)y2-2my-3=0.…(7分)
由△=(2m)2+12(m2+4)>0.
设A(x1,y1),B(x2,y2).
解得y1=$\frac{m+2\sqrt{{m}^{2}+3}}{{m}^{2}+4}$,y2=$\frac{m-2\sqrt{{m}^{2}+3}}{{m}^{2}+4}$.
则|y2-y1|=$\frac{4\sqrt{{m}^{2}+3}}{{m}^{2}+4}$.
∴S△AOB=$\frac{1}{2}$|OE||y2-y1|=$\frac{2}{\sqrt{{m}^{2}+3}+\frac{1}{\sqrt{{m}^{2}+3}}}$ …(10分)
设g(t)=t+$\frac{1}{t}$,t=$\sqrt{{m}^{2}+3}$,t≥$\sqrt{3}$.
则g(t)在区间[$\sqrt{3}$,+∞)上为增函数.
所以g(t)≥$\frac{4\sqrt{3}}{3}$.
所以S△AOB≤$\frac{\sqrt{3}}{2}$,
当且仅当m=0时取等号,所以S△AOB的最大值为$\frac{\sqrt{3}}{2}$.…(13分)

点评 本题考查曲线的轨迹方程的求法,考查三角形的面积的最大值的求法,解题时要认真审题,注意等价转化思想的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知sin2α=$\frac{4}{5}$,α∈(0,$\frac{π}{4}$),sin(β-$\frac{π}{4}$)=$\frac{3}{5}$,β∈($\frac{π}{4}$,$\frac{π}{2}$).
(1)求sinα和cosα的值;
(2)求tan(α+2β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.为增强市民的节能环保意识,郑州市面向全市征召义务宣传志愿者,从符合条件的500名志愿者中随机抽取100名,其年龄频率分布直方图如图所示,其中年龄分组区是:[20,25],[25,30],[30,35],[35,40],[40,45].
(Ⅰ)求图中x的值,并根据频率分布直方图估计这500名志愿者中年龄在[35,40]岁的人数;
(Ⅱ)在抽出的100名志愿者中按年龄采用分层抽样的方法抽取10名参加中心广场的宣传活动,再从这10名志愿者中选取3名担任主要负责人.记这3名志愿者中“年龄低于35岁”的人数为X,求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.某班级有50名学生,现要采取系统抽样的方法在这50名学生中抽出5名学生,将这50名学生随机编号1~50号,并分组,第一组1~10号,第二组11~20号,…,第五组41~50号,若在第三组中抽得号码为22的学生,则在第五组中抽得号码为(  )的学生.
A.42B.44C.46D.48

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知随机变量X服从二项分布B(n,p),若E(X)=30,D(X)=20,则n,p分别等于(  )
A.n=45,p=$\frac{2}{3}$B.n=45,p=$\frac{1}{3}$C.n=90,p=$\frac{1}{3}$D.n=90,p=$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率为$\frac{{\sqrt{3}}}{2}$,一条准线方程为$x=\frac{{4\sqrt{3}}}{3}$.
(1)求椭圆C的标准方程;
(2)设直线l:y=kx+m与椭圆交于P,Q两点.
①若m=-2,当△OPQ面积最大时,求直线l的方程;
②当k≠0时,若以PQ为直径的圆经过椭圆的右顶点,求证:直线l过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.下列5个判断:
①若f(x)=x2-2ax在[1,+∞)上增函数,则a=1;
②函数y=2x为R上的单调递增的函数;
③函数y=ln(x2+1)的值域是R;
④函数y=2|x|的最小值是1;
⑤在同一坐标系中函数y=2x与y=2-x的图象关于y轴对称.
其中正确的是②④⑤.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=xlnx,g(x)=ax2-(a+1)x+1(a∈R).
(Ⅰ)当a=0时,设h(x)=f(x)+g(x),求h(x)的单调区间;
(Ⅱ)当x≥1时,f(x)≤g(x)+lnx,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列说法中错误的是(  )
A.命题“若x=1,则x2+x-2=0”的否命题是假命题
B.命题“存在一个实数x,使不等式x2-3x+4<0成立”为真命题
C.命题“若x2-3x+2=0,则x=1”的逆否命题为“若x≠1,则x2-3x+2≠0”
D.过点(0,2)与抛物线y2=8x只有一个公共点的直线有3条

查看答案和解析>>

同步练习册答案