精英家教网 > 高中数学 > 题目详情
函数f(x)=ex-2x在区间[1,e]上的最大值为
ee-2e
ee-2e
分析:求导,利用导数求函数的最大值.
解答:解:函数的导数为f'(x)=ex-2,
当x≥1时,f'(x)=ex-2>0,此时函数单调递增,
所以在区间[1,e],函数为增函数,所以最大值为f(e)=ee-2e.
故答案为:ee-2e.
点评:本题主要考查了利用导数研究函数的单调性以及利用单调性求函数的最值.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=ex(sinx-cosx),若0≤x≤2011π,则函数f(x)的各极大值之和为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ex-x
(1)证明:对一切x∈R,都有f(x)≥1
(2)证明:1+
1
2
+
1
3
+…+
1
n
>ln(n+1)(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在实数集R上的函数f(x),如果存在函数g(x)=Ax+B(A,B为常数)使得f(x)≥g(x)对任意的x∈R都成立,则称
g(x)为函数f(x)的一个承托函数.以下说法
(1)函数f(x)=x2-2x不存在承托函数;
(2)函数f(x)=x3-3x不存在承托函数;
(3)函数f(x)=
2x
x2-x+1
不存在承托函数;
(4)g(x)=1为函数f(x)=x4-2x3+x2+1的一个承托函数;
(5)g(x)=x为函数f(x)=ex-1的一个承托函数.
中正确的个数为(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ex,g(x)=lnx
(1)若曲线h(x)=f(x)+ax2-ex(a∈R)在点(1,h(1))处的切线垂直于y轴,求函数h(x)的单调区间;
(2)若函数F(x)=1-
ax
-g(x) (a∈R)
在区间(0,2)上无极值,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=ex+x-4(e≈2.71828…)的零点所在的一个区间是(  )

查看答案和解析>>

同步练习册答案