精英家教网 > 高中数学 > 题目详情
在梯形ABCD中,点E、F分别在腰AB、CD上,EF∥AD,AE∶EB=m∶n.求证:(m+n)EF=mBC+nAD.你能由此推导出梯形的中位线公式吗?
见解析
如图,连结AC,交EF于点G.

∵AD∥EF∥BC,∴,∴.
又EG∥BC,FG∥AD,∴
∴EG=·BC,GF=·AD.
又EF=EG+GF,∴(m+n)EF=mBC+nAD.
∴当m=n=1时,EF=(BC+AD),即表示梯形的中位线.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,PA,PB切⊙O于A,B两点,BC∥PA交⊙O于C,MC∥AB交⊙O于D,交PB,PA的延长线于M,Q.
(1)求证:AD∥PM
(2)设⊙O的半径长为1,PA=PB=2,求CD的长

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,圆的两弦交于点的延长线于点.求证:△∽△

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在△ABC中,∠B=90°,以AB为直径的圆O交AC于D,过点D作圆O的切线交BC于E,AE交圆O于点F.求证:

(1)E是BC的中点;
(2)AD·AC=AE·AF.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在△ABC中,作直线DN平行于中线AM,设这条直线交边AB于点D,交边CA的延长线于点E,交边BC于点N.求证:AD∶AB=AE∶AC.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知AB是圆O的直径,C为圆O上一点,CD⊥AB于点D,弦BE与CD、AC分别交于点M、N,且MN=MC

(1)求证:MN=MB;
(2)求证:OC⊥MN。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知P是圆O外一点,PD为圆O的切线,D为切点,割线PEF经过圆心O,若PF=12,PD=4,求圆O的半径长和∠EFD的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,梯形ABCD中,AD∥BC,EF是中位线,BD交EF于P,已知EP∶PF=1∶2,AD=7cm,求BC的长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,过点P的直线与⊙O相交于AB两点.若PA=1,AB=2,PO=3,则⊙O的半径等于________.

查看答案和解析>>

同步练习册答案