精英家教网 > 高中数学 > 题目详情
18.设函数f(x)=ex-ax-1.
(Ⅰ)若函数f(x)的图象在x=0处的切线平行于x轴,求a和f(x)在[0,2]上的最小值;
(Ⅱ)若函数f(x)在R上单调递增,求a的取值范围;
(Ⅲ)当a>0时,设函数f(x)的最小值为g(a),求证g(a)≤0.

分析 (Ⅰ)求出函数的导数,根据f′(0)=0,求出a的值,从而求出f(x)在[0,2]的单调性,求出闭区间上的最小值即可;
(Ⅱ)求函数的导数,利用导数和单调性之间的关系进行求解即可;
(Ⅲ)求出f(x)的最小值即g(a),根据函数的单调性判断即可.

解答 解:(Ⅰ)∵f(x)=ex-ax-1,
∴f′(x)=ex-a,
若函数f(x)的图象在x=0处的切线平行于x轴,
∴f′(0)=1-a=0,得a=1,
当 a=1时,f(x)=ex-x-1,
f′(x)=ex-1≥0,x∈[0,2],
∴f(x)在[0,2]递增,
∴f(x)最小值=f(0)=-1;
(Ⅱ)∵f(x)=ex-ax-1在R上单调递增,
∴f′(x)≥0恒成立,
即f′(x)=ex-a≥0恒成立,
即a≤ex
∵ex>0,∴a≤0,
故实数a的取值范围是(-∞,0];
(Ⅲ)证明:a>0,由f′(x)=ex-a<0,得x<lna,
由f′(x)=ex-a>0,得x>lna,
∴当x=lna时,f(x)min=f(lna)=a-alna-1,
即g(a)=a-alna-1,
则g′(a)=-lna,
由-lna=0,得a=1,
∴g(a)≤g(1)=0,
∴g(a)≤0.

点评 本题考查了函数的单调性、最值问题,考查导数的应用,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.已知正三棱锥S-ABC的底面边长为a,侧棱与底面所成的角为60°,则此棱锥的高为a;侧棱长为$\frac{2\sqrt{3}}{3}$a;侧面与底面所成的角arctan2$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.不等式组$\left\{\begin{array}{l}{-1<x<3}\\{x>a}\end{array}\right.$的解为-1<x<3.则a的取值范围是a≤-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.如图,正四棱锥P-ABCD的体积为2,底面积为6,E为侧棱PC的中点,则直线BE与平面PAC所成的角为600

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若函数f(x)=x3-3ax+b(a>0)的极大值为6,极小值为2,则f(x)的单调递减区间为(  )
A.(-∞,-1)B.(-1,1)C.(1,+∞)D.(-∞,-1)和(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某人摆一个摊位卖小商品,一周内出摊天数x与盈利y(百元),之间的一组数据关系见表:
x23456
y2.23.85.56.57.0
已知$\sum_{i=1}^5{x_i^2}$=90,$\sum_{i=1}^5{{x_i}{y_i}}$=112.3,
(Ⅰ)计算$\overline x$,$\overline y$,并求出线性回归方程;
(Ⅱ)在第(Ⅰ)问条件下,估计该摊主每周7天要是天天出摊,盈利为多少?
(参考公式:b=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,a=$\overline{y}$-b$\overline{x}$.)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知椭圆的中心在原点,对称轴为坐标轴,离心率e=$\frac{1}{2}$,且它的一个焦点在抛物线y2=-4x的准线上,则此椭圆的标准方程为(  )
A.$\frac{x^2}{4}$+y2=1B.$\frac{x^2}{8}$+$\frac{y^2}{6}$=1C.$\frac{x^2}{2}$+y2=1D.$\frac{x^2}{4}$+$\frac{y^2}{3}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若函数f(x)=x2+alnx在区间(1,+∞)上存在极小值,则(  )
A.a>-2B.a≥-2C.a<-2D.a≤-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)的导函数为f′(x)=ax(x+2)(x-a)(a≠0),若函数f(x)在x=-2处取到极小值,则实数a的取值范围是a<-2或a>0.

查看答案和解析>>

同步练习册答案