精英家教网 > 高中数学 > 题目详情
2.对于任何集合S,用|S|表示集合S中的元素个数,用n(S)表示集合S的子集个数.若集合A,B满足条件:|A|=2017,且n(A)+n(B)=n(A∪B),则|A∩B|等于(  )
A.2017B.2016C.2015D.2014

分析 设|B|=x,|A∪B|=y,由|A|+|B|-|A∩B|=|A∪B|,|A|=2017,可得2017+x-|A∩B|=y,由n(A)+n(B)=n(A∪B),可得22017+2x=2y,利用基本不等式的性质即可得出.

解答 解:设|B|=x,|A∪B|=y,
∵|A|+|B|-|A∩B|=|A∪B|,|A|=2017,
∴2017+x-|A∩B|=y,
∴|A∩B|=2017+x-y,
∵n(A)+n(B)=n(A∪B),
∴22017+2x=2y,(*)
∴2y≥$2\sqrt{{2}^{2017}•{2}^{x}}$=${2}^{1+\frac{2017+x}{2}}$,可得2y≥2019+x,当且仅当x=2017,y=2018时取等号,
此时可得:|A∩B|=2017+x-y=2016.
∴|A∩B|=2016.
故选:B.

点评 本题考查了基本不等式的性质、集合的运算性质、指数的运算性质,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.设函数f(x)=|log25(x+1)-a|+2a+1,x∈[0,24],且a∈(0,1)
(Ⅰ)当$a=\frac{1}{2}$时,求f(x)的最小值及此时x的值;
(Ⅱ)当f(x)的最大值不超过3时,求参数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知集合A={x|x2-2x-8<0},$B=\left\{{x\left|{\frac{6-x}{x+6}≤0}\right.}\right\}$,C={x|x2-5x-m<0},若x∈A∩∁RB是x∈C的充分条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知y=f(x)是定义在R上的奇函数,且当x<0时f(x)=$\left\{\begin{array}{l}{-(x+3)^{2}+2,x<-2}\\{1,-2≤x<0}\end{array}\right.$则方程f(x-2)=-$\frac{2}{3}$(x-2)的实数根的个数为(  )
A.8B.7C.6D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=logax(a>0且a≠1)在区间[1,2]上的最大值与函数g(x)=-$\frac{4}{x}$在区间[1,2]上的最大值互为相反数.
(1)求a的值;
(2)若函数F(x)=f(x2-mx-m)在区间(-∞,1-$\sqrt{3}$)上是减函数,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在△ABC中,角A,B,C所对的边分别是a,b,c,且满足cos2C-cos2A=2cos($\frac{π}{6}$-C)cos($\frac{π}{6}$+C).
(1)求角A的大小;
(2)若A<$\frac{π}{2}$,BC=$\sqrt{3}$,且sinA+sin(B-C)=2sin2C,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若θ∈($\frac{π}{2}$,π),且cos2θ+cos($\frac{π}{2}$+2θ)=-$\frac{1}{5}$,则tanθ=(  )
A.-$\frac{1}{3}$B.$\frac{1}{3}$C.-3D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数$f(x)=2sinxcosx+2\sqrt{3}{cos^2}x$.
(1)求函数f(x)的单调区间;
(2)当$x∈[{-\frac{π}{3},\frac{π}{3}}]$时,求函数f(x)的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知向量$\overrightarrow{m}$=(2$\sqrt{3}$cosx,cosx),$\overrightarrow{n}$=(sinx,2cosx)(x∈R),设函数f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$-1.
(Ⅰ)求函数f(x)的单调减区间;
(Ⅱ)已知锐角△ABC的三个内角分别为A,B,C,若f(A)=2,B=$\frac{π}{4}$,边AB=3,求边BC.

查看答案和解析>>

同步练习册答案