精英家教网 > 高中数学 > 题目详情
4.如图,在四棱锥P-ABCD中,底面ABCD是菱形,∠ABC=60°,PA⊥平面ABCD,E,F分别是BC,PC的中点,H是PD上的动点,EH与平面PAD所成的角为θ.
(1)求证:平面AEF⊥平面PAD;
(2)求当θ取最大值为$\frac{π}{4}$时,二面角E-AF-C的正切值.

分析 (1)设菱形ABCD的边长为2a,由余弦定理得AE=$\sqrt{3}a$,再由勾股定理得AE⊥BC,从而AE⊥AD,由线面垂直得PA⊥AE,由此能证明平面AEF⊥平面PAD.
(2)过E作EQ⊥AC,垂足为Q,过Q作QG⊥AF,垂足为G,连结GE,则∠ECQ是二面角E-AF-C的平面角,过点A作AH⊥PD,连结EH,则∠AHE是EH与面PAD所成的最大角,由此能求出二面角E-AF-C的正切值.

解答 证明:(1)设菱形ABCD的边长为2a,
则AE2=(2a)2+a2-2a×a×cos60°=3a2
∴AE=$\sqrt{3}a$,
∴BE2+AE2=AB2,∴AE⊥BC,
又AD∥BC,∴AE⊥AD,
∵PA⊥平面ABCD,AE?平面ABCD,∴PA⊥AE,
∵PA∩AD=A,∴AE⊥平面PAD,
又AE?平面AEF,∴平面AEF⊥平面PAD.
解:(2)过E作EQ⊥AC,垂足为Q,过Q作QG⊥AF,垂足为G,连结GE,
∵PA⊥面ABCD,∴PA⊥EQ,EQ⊥面PAC,
∴∠ECQ是二面角E-AF-C的平面角,
过点A作AH⊥PD,连结EH,
∵AE⊥面PAD,
∴∠AHE是EH与面PAD所成的最大角,
∵∠AHE=$\frac{π}{4}$,∴AH=AE=$\sqrt{3}a$,
AH•PD=PA•AD•2a•PA=$\sqrt{3}a•\sqrt{P{A}^{2}+(2a)^{2}}$,
PA=2$\sqrt{3}a$,
∴PC=4a,EQ=$\frac{\sqrt{3}}{2}$,CQ=$\frac{1}{2}a$,GQ=$\frac{3\sqrt{3}}{4}a$,
tan∠EGQ=$\frac{EQ}{GQ}=\frac{2}{3}$.
∴二面角E-AF-C的正切值为$\frac{2}{3}$.

点评 本题考查面面垂直的证明,考查二面角的正切值的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.如下命题中:
①在△ABC中,若sinA>sinB,则A>B;
②若满足条件C=60°,AB=$\sqrt{3}$,BC=a的△ABC有两个,则$\sqrt{2}<a<\sqrt{3}$;
③在等比数列{an}中,若其前n项和Sn=3n+a,则实数a=-1;
④若向量$\vec a=(1,1)$,$\vec b=(1,-2)$,则向量$\vec a$在向量$\vec b$方向上的投影是$\frac{{\sqrt{5}}}{5}$;
⑤空间中长度分别为1,2,3的线段OA、OB、OC两两相互垂直,若四点O、A、B、C在球面上,则该球的体积为$\frac{{7\sqrt{14}}}{3}$π;
其中正确的命题序号有①③⑤(把你认为正确的命题序号填在横线上).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=lnx-$\frac{a(x-1)}{x}$(a∈R)
(1)求f(x)的单调区间;
(2)若对一切的x∈(1,2),不等式$\frac{1}{lnx}$-$\frac{1}{x-1}$<m恒成立,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=2ex+2ax-a2,a∈R.
(Ⅰ)求函数f(x)的单调区间和极值;
(Ⅱ)若x≥0时,f(x)≥x2-3恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,A、B、C为⊙O上三点,B为$\widehat{AC}$的中点,P为AC延长线上一点,PQ与⊙O相切于点Q,BQ与AC相交于点D.
(Ⅰ)证明:△DPQ为等腰三角形;
(Ⅱ)若PC=1,AD=PD,求BD•QD的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.语文成绩服从正态分布N(100,17.52),数学成绩的频率分布直方图如图:
(1)如果成绩大于135的为特别优秀,这500名学生中本次考试语文、数学特别优秀的大约各多少人?
(2)如果语文和数学两科都特别优秀的共有6人,从(1)中的这些同学中随机抽取3人,设三人中两科都特别优秀的有x人,求x的分布列和数学期望.
(3)根据以上数据,是否有99%的把握认为语文特别优秀的同学,数学也特别优秀.
①若x~N(μ,σ2),则P(μ-σ<x≤μ+σ)=0.68,P(μ-2σ<x≤μ+2σ)=0.96.
②k2=$\frac{n(ad-bc)^2}{(a+b)(c+d)(a+c)(b+d)}$;

P(k2≥k00.500.400.0100.0050.001
k00.4550.7086.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若a>b,则下列不等式正确的是(  )
A.a+c<b+cB.a-c>b-cC.ac2>bc2D.$\frac{a}{c}$>$\frac{b}{c}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)=sin(2x+φ),(0<φ<$\frac{π}{2}$),f(x)≤f($\frac{π}{6}$)恒成立,则φ=$\frac{π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知数列{an}满足log2an+1=log2an+1(n∈N+),且a2+a4+a6=4,则a5+a7+a9的值是(  )
A.32B.$\frac{1}{2}$C.8D.-8

查看答案和解析>>

同步练习册答案