分析 (1)设菱形ABCD的边长为2a,由余弦定理得AE=$\sqrt{3}a$,再由勾股定理得AE⊥BC,从而AE⊥AD,由线面垂直得PA⊥AE,由此能证明平面AEF⊥平面PAD.
(2)过E作EQ⊥AC,垂足为Q,过Q作QG⊥AF,垂足为G,连结GE,则∠ECQ是二面角E-AF-C的平面角,过点A作AH⊥PD,连结EH,则∠AHE是EH与面PAD所成的最大角,由此能求出二面角E-AF-C的正切值.
解答
证明:(1)设菱形ABCD的边长为2a,
则AE2=(2a)2+a2-2a×a×cos60°=3a2,
∴AE=$\sqrt{3}a$,
∴BE2+AE2=AB2,∴AE⊥BC,
又AD∥BC,∴AE⊥AD,
∵PA⊥平面ABCD,AE?平面ABCD,∴PA⊥AE,
∵PA∩AD=A,∴AE⊥平面PAD,
又AE?平面AEF,∴平面AEF⊥平面PAD.
解:(2)过E作EQ⊥AC,垂足为Q,过Q作QG⊥AF,垂足为G,连结GE,
∵PA⊥面ABCD,∴PA⊥EQ,EQ⊥面PAC,
∴∠ECQ是二面角E-AF-C的平面角,
过点A作AH⊥PD,连结EH,
∵AE⊥面PAD,
∴∠AHE是EH与面PAD所成的最大角,
∵∠AHE=$\frac{π}{4}$,∴AH=AE=$\sqrt{3}a$,
AH•PD=PA•AD•2a•PA=$\sqrt{3}a•\sqrt{P{A}^{2}+(2a)^{2}}$,
PA=2$\sqrt{3}a$,
∴PC=4a,EQ=$\frac{\sqrt{3}}{2}$,CQ=$\frac{1}{2}a$,GQ=$\frac{3\sqrt{3}}{4}a$,
tan∠EGQ=$\frac{EQ}{GQ}=\frac{2}{3}$.
∴二面角E-AF-C的正切值为$\frac{2}{3}$.
点评 本题考查面面垂直的证明,考查二面角的正切值的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| P(k2≥k0) | 0.50 | 0.40 | … | 0.010 | 0.005 | 0.001 |
| k0 | 0.455 | 0.708 | … | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a+c<b+c | B. | a-c>b-c | C. | ac2>bc2 | D. | $\frac{a}{c}$>$\frac{b}{c}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 32 | B. | $\frac{1}{2}$ | C. | 8 | D. | -8 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com