精英家教网 > 高中数学 > 题目详情
20.等差败列{an}的前n项和为Sn,若a3+a16=10,则S18=(  )
A.50B.90C.100D.190

分析 利用等差数列的通项公式及前n项和公式求解.

解答 解:∵等差败列{an}的前n项和为Sn,a3+a16=10,
S18=$\frac{18}{2}$(a1+a18)=9(a3+a16)=90.
故选:B.

点评 本题考查等差数列的前18项和的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)过点M(2,1),且离心率为$\frac{\sqrt{3}}{2}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若过原点的直线l1与椭圆C交于P,Q两点,且在直线l2:x-y+2$\sqrt{6}$=0上存在点M,使得△MPQ为等边三角形,求直线l1的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设曲线y=x2-x在点(3,6)处的切线与直线ax+y+1=0垂直,则a=$\frac{1}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.如图所示的正四棱台的上底面边长为2,下底面边长为8,高为3$\sqrt{2}$,则它的侧棱长为6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=2a[1+sin$\frac{x}{2}$(cos$\frac{x}{2}$-sin$\frac{x}{2}$)]+b.
(1)当a=1时,求f(x)的单调递增区间;
(2)当a>0,且x∈[0,π]时,f(x)的值域是[3,4],求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知过双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左焦点F(-c,0)和虚轴端点E的直线交双曲线的右支于点P,若E为线段FP的中点,则该双曲线的离心率为(  )
A.$\frac{\sqrt{5}}{2}$B.$\sqrt{5}$C.$\frac{\sqrt{5}+1}{2}$D.$\sqrt{5}$+1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=$\frac{1}{3}$x3-ax2+b(a,b∈R),其图象在点(1,f(1))处的切线方程为x+y-3=0.
(1)求a,b的值;
(2)求函数f(x)在区间[-2,4]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.某模具长新接一批新模型制作的订单,为给订购方回复出货时间,需确定制作该批模型所花费的时间,为此进行了5次试验,收集数据如下:
 制作模型数x(个) 10 20 30 40 50
 花费时间y(分钟) 64 69 75 82 90
(1)请根据以上数据,求关于x的线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$;
(2)若要制作60个这样的模型,请根据(1)中所求的回归方程预测所花费的时间.
(注:回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$中斜率和截距最小二乘估计公式分别为$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{xy}}{\sum_{i=1}^{n}{x}_{i}^{2}-n\stackrel{-2}{x}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$,参考数据:$\sum_{i=1}^{5}$xiyi=12050,$\sum_{i=1}^{5}$x${\;}_{i}^{2}$=5500)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在△ABC中,角A,B,C所对的边分别为a,b,c,已知acosB+bcosA=2ccosC.
(1)求角C的大小;
(2)若a=5,b=8,求边c的长.

查看答案和解析>>

同步练习册答案