精英家教网 > 高中数学 > 题目详情
(2011•上海模拟)设角α、β是锐角,则“α+β=
π
4
”是“(1+tanα)(1+tanβ)=2”成立的(  )
分析:先根据α,β均为锐角且α+β=
π
4
求出tanα、tanβ的关系式,再将(1+tanα)(1+tanβ)展开h化简,判断即可.
解答:解:∵α,β均为锐角,α+β=
π
4

?tan(α+β)=
tanα+tanβ
1-tanα•tanβ
=1,
?tanα+tanβ=1-tanαtanβ,?tanα+tanβ+tanαtanβ=1
?(1+tanα)(1+tanβ)=1+tanα+tanβ+tanαtanβ=1+1=2
所以角α、β是锐角,则“α+β=
π
4
”是“(1+tanα)(1+tanβ)=2”成立的充要条件.
故选C.
点评:本题主要考查两角和的正切公式.充要条件的判断方法,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•上海模拟)如图,在△ABC中,∠BAC=90°,AB=6,D在斜边BC上,且CD=2DB,则
AB
AD
的值为
24
24

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知数列{an}的前n项和Sn=2n2+pn,a7=11,若ak+ak+1>12,则正整数k的最小值为
6
6

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知0<a<1,则函数y=a|x|-|logax|的零点的个数为
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)设a是实数.若函数f(x)=|x+a|-|x-1|是定义在R上的奇函数,但不是偶函数,则函数f(x)的递增区间为
〔-1,1〕
〔-1,1〕

查看答案和解析>>

同步练习册答案