精英家教网 > 高中数学 > 题目详情
已知函数是定义在上的奇函数,给出下列命题:
(1)
(2)若在 [0, 上有最小值 -1,则上有最大值1;
(3)若在 [1, 上为增函数,则上为减函数;
(4)若时,; 则时,
其中正确的序号是:                  
①②④

试题分析:(1)利用奇函数的定义可作出判断;(2)利用奇函数的定义以及图象关于原点对称可作出判断;(3)利用奇函数在关于原点对称的区间上单调性一致作出判断。(4)结合奇函数的对称性求解得到。
解:(1)因为f(x)是R上的奇函数,所以f(-x)=-f(x),则f(-0)=-f(0),即f(0)=0,故(1)正确;(2)f(x)在[0,+∞)上有最小值-1,即f(x)-1,当x∈(-∞,0)时,-x∈(0,+∞),则f(-x)-1,所以f(x)=-f(-x)1,即f(x)在(-∞,0)上有最大值1,故(2)正确;(3)因为奇函数的图象关于原点对称,所以奇函数在关于原点对称的区间上单调性一致,故(3)错误;(4)若时,; 则根据奇函数,结合对称性可知,时,成立,故答案为:①②④.
点评:本题以命题为载体考查函数的奇偶性、单调性,准确把握奇偶函数的定义及其图象特征是解决本题的基础
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

设函数是定义在R上的奇函数,且对任意都有,当时,,则       

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设f(x)为周期是2的奇函数,当时,f(x)=x(x+1),则当时,f(x)的表达式为
A.(x-5)(x-4)B.(x-6)(x-5)C.(x-6)(5-x)D.(x-6)(7-x)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数上的奇函数.当时,,则 的值是 (     )
A.3B.-3C.-1D.1

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)讨论的奇偶性;
(2)判断上的单调性并用定义证明。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知是定义在上的奇函数,当时,,则,在上所有零点之和为(   )
A.7B.8 C.9D.10

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)已知函数,且
(1)求
(2)判断的奇偶性;
(3)试判断上的单调性,并证明。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)判断函数的奇偶性;(4分)
(2)若关于的方程有两解,求实数的取值范围;(6分)
(3)若,记,试求函数在区间上的最大值.(10分)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知定义在R上的函数是奇函数,对x∈R都有f(2+x)=f(2-x),当f(1)=-2时,
f(2007)的值为      

查看答案和解析>>

同步练习册答案