精英家教网 > 高中数学 > 题目详情
已知椭圆的一个焦点与抛物线的焦点重合,则该椭圆的离心率为(    )
A.B.C.D.
D

试题分析:抛物线的焦点为(2,0),所以
点评:熟记椭圆中a、b、c的关系式,不要和双曲线中a、b、c的关系式弄混淆了。属于基础题型。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分10分)
已知点,参数,点Q在曲线C:上.
(1)求在直角坐标系中点的轨迹方程和曲线C的方程;
(2)求|PQ|的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知点,点,直线都是圆的切线(点不在轴上)。
⑴求过点且焦点在轴上抛物线的标准方程;
⑵过点作直线与⑴中的抛物线相交于两点,问是否存在定点,使.为常数?若存在,求出点的坐标与常数;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

椭圆的右焦点与抛物线的焦点重合,过作与轴垂直的直线与椭圆交于两点,与抛物线交于两点,且
(1)求椭圆的方程;
(2)若过点的直线与椭圆相交于两点,设为椭圆上一点,且满足
为坐标原点),当时,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知是抛物线的焦点,过且斜率为的直线交两点.设,则的值等于       

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

椭圆C:=1(a>b>0)的两个焦点分别为F1(﹣c,0),F2(c,0),M是椭圆短轴的一个端点,且满足=0,点N( 0,3 )到椭圆上的点的最远距离为5
(1)求椭圆C的方程
(2)设斜率为k(k≠0)的直线l与椭圆C相交于不同的两点A、B,Q为AB的中点,;问A、B两点能否关于过点P、Q的直线对称?若能,求出k的取值范围;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆的焦点为,点在椭圆上,若的大小为                      

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)
已知点为抛物线: 的焦点,为抛物线上的点,且

(Ⅰ)求抛物线的方程和点的坐标;
(Ⅱ)过点引出斜率分别为的两直线与抛物线的另一交点为与抛物线的另一交点为,记直线的斜率为
(ⅰ)若,试求的值;
(ⅱ)证明:为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知方程 表示焦点在y轴上的双曲线,则k的取值范围是(   )
A.3<k<9B.k>3C.k>9D.k<3

查看答案和解析>>

同步练习册答案