精英家教网 > 高中数学 > 题目详情

已知双曲线x2-数学公式=1与点P(1,2),过P点作直线l与双曲线交于A、B两点,若P为AB中点.
(1)求直线AB的方程;
(2)若Q(1,1),证明不存在以Q为中点的弦.

解:(1)设过P(1,2)点的直线AB方程为y-2=k(x-1),
代入双曲线方程得
(2-k2)x2+(2k2-4k)x-(k4-4k+6)=0.
设A(x1,y1),B(x2,y2),
则有x1+x2=-
由已知=xp=1,
=2.解得k=1.
又k=1时,△=16>0,从而直线AB方程为x-y+1=0.
(2)证明:按同样方法求得k=2,
而当k=2时,△<0,
所以这样的直线不存在.
分析:(1)设出过P(1,2)点的直线AB方程,然后代入双曲线方程,利用设而不求韦达定理求出k的值,求出AB的方程即可.
(2)按照(1)的方法,求出k=2,此时,△<0,所以这样的直线不存在.
点评:本题考查双曲线的运用,以及直线的一般式,通过直线与双曲线的方程的联立,通过设而不求韦达定理解题,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知双曲线x2-=1,过P(2,1)点作一直线交双曲线于A、B两点,并使P为AB的中点,则直线AB的斜率为____________________-.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线x2-=1的焦点为F1、F2,点M在双曲线上,且Equation.3·Equation.3=0,则M到x轴的距离为(    )

A.               B.                C.               D.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线x2-=1,过点P(1,1)能否作直线l,与双曲线交于A、B两点,且点P是线段AB的中点?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线x2-=1的焦点为F1、F2,点M在双曲线上,且=0,则点M到x轴的距离为(    )

A.              B.            C.            D.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线x2-=1,双曲线存在关于直线l:y=kx+4的对称点,求实数k的取值范围.

查看答案和解析>>

同步练习册答案