精英家教网 > 高中数学 > 题目详情
8.已知△ABC的三个内角A、B、C的对边分别为a、b、c,且acosC,bcosB,ccosA成等差数列.
(1)求角B的大小;
(2)如果b=2,求△ABC的面积S△ABC的最大值.

分析 (1)由已知可得2bcosB=acosC+ccosA,利用正弦定理可得2sinBcosB=sinAcosC+sinCcosA=sinB,化简解得cosB=$\frac{1}{2}$,即可结合范围求B.
(2)由余弦定理可得:4=a2+c2-ac≥2ac-ac=ac.(当且仅当a=c成立),结合三角形面积公式即可得解.

解答 解:(1)∵acosC、bcosB、ccosA成等差数列,
∴2bcosB=acosC+ccosA,
∴2sinBcosB=sinAcosC+sinCcosA=sinB,
∴cosB=$\frac{1}{2}$,
∴B=60°.
(2)∵b=2,B=60°.
∴由余弦定理可得:4=a2+c2-ac≥2ac-ac=ac.(当且仅当a=c成立),
∴△ABC的面积S△ABC=$\frac{1}{2}$acsinB≤$\frac{1}{2}×4×\frac{\sqrt{3}}{2}$=$\sqrt{3}$.

点评 本题考查了等差数列的性质,三角形的解法,余弦定理以及正弦定理的应用,考查计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.定义集合A*B={x|x∈A,且x∉B},若A={1,2,3,4,5,},B={2,4,5},则集合A*B的子集的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设[x]表示不超过实数x的最大整数,如[2.6]=2,[-2.6]=-3,设g(x)=$\frac{{a}^{x}}{{a}^{x}+1}$(a>0且a≠1),那么函数f(x)=[g(x)-$\frac{1}{2}$]+[g(-x)-$\frac{1}{2}$]的值域为(  )
A.{-1,0,1}B.{0,1}C.{1,-1}D.{-1,0}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.f(x)是偶函数且在区间[a,b],(其中a,b>0)是递增的,则它在区间[-b,-a]上(  )
A.递增且有最大值为f(-a)B.递减且有最小值为f(-a)
C.递增且有最大值为f(-b)D.递减且有最大值为f(-a)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知ξ的分别列如下:
ξ1234
P$\frac{1}{4}$$\frac{1}{3}$$\frac{1}{6}$$\frac{1}{4}$
并且η=2ξ+3,则方差Dη=$\frac{139}{36}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.证明:cos$\frac{π}{11}$cos$\frac{2π}{11}$cos$\frac{3π}{11}$cos$\frac{4π}{11}$cos$\frac{5π}{11}$=$\frac{1}{{2}^{5}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若数列{an}的通项公式是an=(-1)n•$\frac{1}{2n+1}$,则a10=(  )
A.$\frac{1}{21}$B.-$\frac{1}{21}$C.$\frac{1}{20}$D.-$\frac{1}{20}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.解方程:3x4+5x3-17x2-13x+6=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.求1、$\frac{1}{3}$、$\frac{1}{5}$、$\frac{1}{7}$、$\frac{1}{9}$的数列通式.

查看答案和解析>>

同步练习册答案